Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Avalie o limite.
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.1.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.1.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.1.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Etapa 1.1.2.3.1
Simplifique cada termo.
Etapa 1.1.2.3.1.1
Simplifique cada termo.
Etapa 1.1.2.3.1.1.1
Elevar a qualquer potência positiva produz .
Etapa 1.1.2.3.1.1.2
Multiplique por .
Etapa 1.1.2.3.1.2
Subtraia de .
Etapa 1.1.2.3.1.3
Eleve à potência de .
Etapa 1.1.2.3.1.4
Multiplique por .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Etapa 1.1.3.1
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Elevar a qualquer potência positiva produz .
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Etapa 1.3.3.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.3.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.1.3
Substitua todas as ocorrências de por .
Etapa 1.3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.5
Some e .
Etapa 1.3.3.6
Multiplique por .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Simplifique.
Etapa 1.3.5.1
Aplique a propriedade distributiva.
Etapa 1.3.5.2
Aplique a propriedade distributiva.
Etapa 1.3.5.3
Combine os termos.
Etapa 1.3.5.3.1
Eleve à potência de .
Etapa 1.3.5.3.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.3.5.3.3
Some e .
Etapa 1.3.5.3.4
Multiplique por .
Etapa 1.3.5.3.5
Some e .
Etapa 1.3.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3
Etapa 3.1
Avalie o limite do numerador e o limite do denominador.
Etapa 3.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 3.1.2
Avalie o limite do numerador.
Etapa 3.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.2.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.2.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 3.1.2.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.2.5
Avalie os limites substituindo por todas as ocorrências de .
Etapa 3.1.2.5.1
Avalie o limite de substituindo por .
Etapa 3.1.2.5.2
Avalie o limite de substituindo por .
Etapa 3.1.2.6
Simplifique a resposta.
Etapa 3.1.2.6.1
Simplifique cada termo.
Etapa 3.1.2.6.1.1
Elevar a qualquer potência positiva produz .
Etapa 3.1.2.6.1.2
Multiplique por .
Etapa 3.1.2.6.1.3
Multiplique por .
Etapa 3.1.2.6.2
Some e .
Etapa 3.1.3
Avalie o limite de substituindo por .
Etapa 3.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3.3
Encontre a derivada do numerador e do denominador.
Etapa 3.3.1
Diferencie o numerador e o denominador.
Etapa 3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.3
Avalie .
Etapa 3.3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3.3
Multiplique por .
Etapa 3.3.4
Avalie .
Etapa 3.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.4.3
Multiplique por .
Etapa 3.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4
Divida por .
Etapa 4
Etapa 4.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 4.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 4.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 4.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 5
Avalie o limite de substituindo por .
Etapa 6
Etapa 6.1
Simplifique cada termo.
Etapa 6.1.1
Elevar a qualquer potência positiva produz .
Etapa 6.1.2
Multiplique por .
Etapa 6.1.3
Multiplique por .
Etapa 6.2
Subtraia de .
Etapa 6.3
Cancele o fator comum de .
Etapa 6.3.1
Fatore de .
Etapa 6.3.2
Cancele o fator comum.
Etapa 6.3.3
Reescreva a expressão.