Cálculo Exemplos

Avalie o Limite limite à medida que x se aproxima de 9 de (x+ raiz quadrada de x-12)/(x-9)
Etapa 1
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.2
Mova o limite para baixo do sinal do radical.
Etapa 1.1.2.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.4
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 1.1.2.4.1
Avalie o limite de substituindo por .
Etapa 1.1.2.4.2
Avalie o limite de substituindo por .
Etapa 1.1.2.5
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.2.5.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.2.5.1.1
Reescreva como .
Etapa 1.1.2.5.1.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 1.1.2.5.1.3
Multiplique por .
Etapa 1.1.2.5.2
Some e .
Etapa 1.1.2.5.3
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.3.3.1
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4
Avalie .
Toque para ver mais passagens...
Etapa 1.3.4.1
Use para reescrever como .
Etapa 1.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4.4
Combine e .
Etapa 1.3.4.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.4.6.1
Multiplique por .
Etapa 1.3.4.6.2
Subtraia de .
Etapa 1.3.4.7
Mova o número negativo para a frente da fração.
Etapa 1.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.6
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.6.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.3.6.2
Combine os termos.
Toque para ver mais passagens...
Etapa 1.3.6.2.1
Multiplique por .
Etapa 1.3.6.2.2
Some e .
Etapa 1.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.10
Some e .
Etapa 1.4
Reescreva como .
Etapa 1.5
Combine os termos.
Toque para ver mais passagens...
Etapa 1.5.1
Escreva como uma fração com um denominador comum.
Etapa 1.5.2
Combine os numeradores em relação ao denominador comum.
Etapa 1.6
Divida por .
Etapa 2
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.5
Mova o limite para baixo do sinal do radical.
Etapa 2.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.7
Mova o limite para baixo do sinal do radical.
Etapa 3
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 3.1
Avalie o limite de substituindo por .
Etapa 3.2
Avalie o limite de substituindo por .
Etapa 4
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 4.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.1.1
Reescreva como .
Etapa 4.1.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.1.3
Multiplique por .
Etapa 4.1.4
Some e .
Etapa 4.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 4.2.1
Reescreva como .
Etapa 4.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.3
Multiplique .
Toque para ver mais passagens...
Etapa 4.3.1
Multiplique por .
Etapa 4.3.2
Multiplique por .
Etapa 5
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: