Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Use para reescrever como .
Etapa 1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.5
Combine e .
Etapa 1.6
Combine os numeradores em relação ao denominador comum.
Etapa 1.7
Simplifique o numerador.
Etapa 1.7.1
Multiplique por .
Etapa 1.7.2
Subtraia de .
Etapa 1.8
Mova o número negativo para a frente da fração.
Etapa 1.9
Combine e .
Etapa 1.10
Combine e .
Etapa 1.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.12
Fatore de .
Etapa 1.13
Cancele os fatores comuns.
Etapa 1.13.1
Fatore de .
Etapa 1.13.2
Cancele o fator comum.
Etapa 1.13.3
Reescreva a expressão.
Etapa 2
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Aplique regras básicas de expoentes.
Etapa 2.2.1
Reescreva como .
Etapa 2.2.2
Multiplique os expoentes em .
Etapa 2.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.2.2
Multiplique .
Etapa 2.2.2.2.1
Combine e .
Etapa 2.2.2.2.2
Multiplique por .
Etapa 2.2.2.3
Mova o número negativo para a frente da fração.
Etapa 2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.5
Combine e .
Etapa 2.6
Combine os numeradores em relação ao denominador comum.
Etapa 2.7
Simplifique o numerador.
Etapa 2.7.1
Multiplique por .
Etapa 2.7.2
Subtraia de .
Etapa 2.8
Mova o número negativo para a frente da fração.
Etapa 2.9
Combine e .
Etapa 2.10
Multiplique por .
Etapa 2.11
Combine e .
Etapa 2.12
Simplifique a expressão.
Etapa 2.12.1
Multiplique por .
Etapa 2.12.2
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.12.3
Mova o número negativo para a frente da fração.
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Encontre a primeira derivada.
Etapa 4.1.1
Use para reescrever como .
Etapa 4.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.1.5
Combine e .
Etapa 4.1.6
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.7
Simplifique o numerador.
Etapa 4.1.7.1
Multiplique por .
Etapa 4.1.7.2
Subtraia de .
Etapa 4.1.8
Mova o número negativo para a frente da fração.
Etapa 4.1.9
Combine e .
Etapa 4.1.10
Combine e .
Etapa 4.1.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 4.1.12
Fatore de .
Etapa 4.1.13
Cancele os fatores comuns.
Etapa 4.1.13.1
Fatore de .
Etapa 4.1.13.2
Cancele o fator comum.
Etapa 4.1.13.3
Reescreva a expressão.
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Defina o numerador como igual a zero.
Etapa 5.3
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Etapa 6
Etapa 6.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 6.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6.3
Resolva .
Etapa 6.3.1
Para remover o radical no lado esquerdo da equação, eleve ao cubo os dois lados da equação.
Etapa 6.3.2
Simplifique cada lado da equação.
Etapa 6.3.2.1
Use para reescrever como .
Etapa 6.3.2.2
Simplifique o lado esquerdo.
Etapa 6.3.2.2.1
Multiplique os expoentes em .
Etapa 6.3.2.2.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.3.2.2.1.2
Cancele o fator comum de .
Etapa 6.3.2.2.1.2.1
Cancele o fator comum.
Etapa 6.3.2.2.1.2.2
Reescreva a expressão.
Etapa 6.3.2.3
Simplifique o lado direito.
Etapa 6.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 6.3.3
Resolva .
Etapa 6.3.3.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 6.3.3.2
Simplifique .
Etapa 6.3.3.2.1
Reescreva como .
Etapa 6.3.3.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.3.3.2.3
Mais ou menos é .
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Etapa 9.1
Simplifique a expressão.
Etapa 9.1.1
Reescreva como .
Etapa 9.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.2
Cancele o fator comum de .
Etapa 9.2.1
Cancele o fator comum.
Etapa 9.2.2
Reescreva a expressão.
Etapa 9.3
Simplifique a expressão.
Etapa 9.3.1
Elevar a qualquer potência positiva produz .
Etapa 9.3.2
Multiplique por .
Etapa 9.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 9.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Indefinido
Etapa 10
Etapa 10.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 10.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 10.2.1
Substitua a variável por na expressão.
Etapa 10.2.2
A resposta final é .
Etapa 10.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 10.3.1
Substitua a variável por na expressão.
Etapa 10.3.2
Simplifique o resultado.
Etapa 10.3.2.1
Remova os parênteses.
Etapa 10.3.2.2
A resposta final é .
Etapa 10.4
Como a primeira derivada não mudou os sinais em torno de , este não é um máximo local nem um mínimo local.
Não é um máximo nem um mínimo local
Etapa 10.5
Nenhum máximo ou mínimo local encontrado para .
Nenhum máximo ou mínimo local
Nenhum máximo ou mínimo local
Etapa 11