Cálculo Exemplos

Determina o valor máximo/mínimo y=6sin(pix-6)-6
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.2.2
A derivada de em relação a é .
Etapa 1.2.2.3
Substitua todas as ocorrências de por .
Etapa 1.2.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.7
Multiplique por .
Etapa 1.2.8
Some e .
Etapa 1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Some e .
Etapa 1.4.2
Reordene os fatores de .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
A derivada de em relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Diferencie.
Toque para ver mais passagens...
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Multiplique por .
Etapa 2.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.7
Some e .
Etapa 2.4
Eleve à potência de .
Etapa 2.5
Eleve à potência de .
Etapa 2.6
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.7
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.1
Divida cada termo em por .
Etapa 4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.1.1
Cancele o fator comum.
Etapa 4.2.1.2
Reescreva a expressão.
Etapa 4.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.1
Cancele o fator comum.
Etapa 4.2.2.2
Divida por .
Etapa 4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.3.1.1
Fatore de .
Etapa 4.3.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.3.1.2.1
Fatore de .
Etapa 4.3.1.2.2
Cancele o fator comum.
Etapa 4.3.1.2.3
Reescreva a expressão.
Etapa 4.3.2
Divida por .
Etapa 5
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 6
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.1
O valor exato de é .
Etapa 7
Some aos dois lados da equação.
Etapa 8
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 8.1
Divida cada termo em por .
Etapa 8.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 8.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 8.2.1.1
Cancele o fator comum.
Etapa 8.2.1.2
Divida por .
Etapa 8.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 8.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 8.3.1.1
Multiplique o numerador pelo inverso do denominador.
Etapa 8.3.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 8.3.1.2.1
Cancele o fator comum.
Etapa 8.3.1.2.2
Reescreva a expressão.
Etapa 9
A função do cosseno é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 10
Resolva .
Toque para ver mais passagens...
Etapa 10.1
Simplifique .
Toque para ver mais passagens...
Etapa 10.1.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 10.1.2
Combine frações.
Toque para ver mais passagens...
Etapa 10.1.2.1
Combine e .
Etapa 10.1.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 10.1.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 10.1.3.1
Multiplique por .
Etapa 10.1.3.2
Subtraia de .
Etapa 10.2
Some aos dois lados da equação.
Etapa 10.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 10.3.1
Divida cada termo em por .
Etapa 10.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 10.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 10.3.2.1.1
Cancele o fator comum.
Etapa 10.3.2.1.2
Divida por .
Etapa 10.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 10.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.3.3.1.1
Multiplique o numerador pelo inverso do denominador.
Etapa 10.3.3.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 10.3.3.1.2.1
Fatore de .
Etapa 10.3.3.1.2.2
Cancele o fator comum.
Etapa 10.3.3.1.2.3
Reescreva a expressão.
Etapa 11
A solução para a equação .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 13.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 13.1.1
Aplique a propriedade distributiva.
Etapa 13.1.2
Combine e .
Etapa 13.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 13.1.3.1
Cancele o fator comum.
Etapa 13.1.3.2
Reescreva a expressão.
Etapa 13.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 13.2.1
Subtraia de .
Etapa 13.2.2
Some e .
Etapa 13.3
O valor exato de é .
Etapa 13.4
Multiplique por .
Etapa 14
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 15
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 15.1
Substitua a variável por na expressão.
Etapa 15.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 15.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 15.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 15.2.1.1.1
Aplique a propriedade distributiva.
Etapa 15.2.1.1.2
Combine e .
Etapa 15.2.1.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 15.2.1.1.3.1
Cancele o fator comum.
Etapa 15.2.1.1.3.2
Reescreva a expressão.
Etapa 15.2.1.2
Subtraia de .
Etapa 15.2.1.3
Some e .
Etapa 15.2.1.4
O valor exato de é .
Etapa 15.2.1.5
Multiplique por .
Etapa 15.2.2
Subtraia de .
Etapa 15.2.3
A resposta final é .
Etapa 16
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 17
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 17.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 17.1.1
Aplique a propriedade distributiva.
Etapa 17.1.2
Combine e .
Etapa 17.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 17.1.3.1
Cancele o fator comum.
Etapa 17.1.3.2
Reescreva a expressão.
Etapa 17.1.4
Mova para a esquerda de .
Etapa 17.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 17.2.1
Subtraia de .
Etapa 17.2.2
Some e .
Etapa 17.3
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante. Torne a expressão negativa, pois o seno é negativo no quarto quadrante.
Etapa 17.4
O valor exato de é .
Etapa 17.5
Multiplique por .
Etapa 17.6
Multiplique por .
Etapa 18
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 19
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 19.1
Substitua a variável por na expressão.
Etapa 19.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 19.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 19.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 19.2.1.1.1
Aplique a propriedade distributiva.
Etapa 19.2.1.1.2
Combine e .
Etapa 19.2.1.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 19.2.1.1.3.1
Cancele o fator comum.
Etapa 19.2.1.1.3.2
Reescreva a expressão.
Etapa 19.2.1.1.4
Mova para a esquerda de .
Etapa 19.2.1.2
Subtraia de .
Etapa 19.2.1.3
Some e .
Etapa 19.2.1.4
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante. Torne a expressão negativa, pois o seno é negativo no quarto quadrante.
Etapa 19.2.1.5
O valor exato de é .
Etapa 19.2.1.6
Multiplique .
Toque para ver mais passagens...
Etapa 19.2.1.6.1
Multiplique por .
Etapa 19.2.1.6.2
Multiplique por .
Etapa 19.2.2
Subtraia de .
Etapa 19.2.3
A resposta final é .
Etapa 20
Esses são os extremos locais para .
é um máximo local
é um mínimo local
Etapa 21