Cálculo Exemplos

Avalie o Limite limit as x approaches - square root of 3 of (8(x^4-9))/(x^2-3)
Etapa 1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 2.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 2.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 2.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 2.1.2.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.2.1.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.1.2.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.2.2
Avalie o limite de substituindo por .
Etapa 2.1.2.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.1.2.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.3.1.1
Aplique a regra do produto a .
Etapa 2.1.2.3.1.2
Eleve à potência de .
Etapa 2.1.2.3.1.3
Multiplique por .
Etapa 2.1.2.3.1.4
Reescreva como .
Toque para ver mais passagens...
Etapa 2.1.2.3.1.4.1
Use para reescrever como .
Etapa 2.1.2.3.1.4.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.2.3.1.4.3
Combine e .
Etapa 2.1.2.3.1.4.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.1.2.3.1.4.4.1
Fatore de .
Etapa 2.1.2.3.1.4.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.1.2.3.1.4.4.2.1
Fatore de .
Etapa 2.1.2.3.1.4.4.2.2
Cancele o fator comum.
Etapa 2.1.2.3.1.4.4.2.3
Reescreva a expressão.
Etapa 2.1.2.3.1.4.4.2.4
Divida por .
Etapa 2.1.2.3.1.5
Eleve à potência de .
Etapa 2.1.2.3.1.6
Multiplique por .
Etapa 2.1.2.3.2
Subtraia de .
Etapa 2.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 2.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.3.1.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.1.3.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3.2
Avalie o limite de substituindo por .
Etapa 2.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.3.3.1.1
Aplique a regra do produto a .
Etapa 2.1.3.3.1.2
Eleve à potência de .
Etapa 2.1.3.3.1.3
Multiplique por .
Etapa 2.1.3.3.1.4
Reescreva como .
Toque para ver mais passagens...
Etapa 2.1.3.3.1.4.1
Use para reescrever como .
Etapa 2.1.3.3.1.4.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.3.3.1.4.3
Combine e .
Etapa 2.1.3.3.1.4.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.1.3.3.1.4.4.1
Cancele o fator comum.
Etapa 2.1.3.3.1.4.4.2
Reescreva a expressão.
Etapa 2.1.3.3.1.4.5
Avalie o expoente.
Etapa 2.1.3.3.1.5
Multiplique por .
Etapa 2.1.3.3.2
Subtraia de .
Etapa 2.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 2.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 2.3.1
Diferencie o numerador e o denominador.
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5
Some e .
Etapa 2.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.9
Some e .
Etapa 2.4
Reduza.
Toque para ver mais passagens...
Etapa 2.4.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.4.1.1
Fatore de .
Etapa 2.4.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.4.1.2.1
Fatore de .
Etapa 2.4.1.2.2
Cancele o fator comum.
Etapa 2.4.1.2.3
Reescreva a expressão.
Etapa 2.4.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.4.2.1
Fatore de .
Etapa 2.4.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.4.2.2.1
Eleve à potência de .
Etapa 2.4.2.2.2
Fatore de .
Etapa 2.4.2.2.3
Cancele o fator comum.
Etapa 2.4.2.2.4
Reescreva a expressão.
Etapa 2.4.2.2.5
Divida por .
Etapa 3
Avalie o limite.
Toque para ver mais passagens...
Etapa 3.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 4
Avalie o limite de substituindo por .
Etapa 5
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 5.1
Multiplique por .
Etapa 5.2
Aplique a regra do produto a .
Etapa 5.3
Eleve à potência de .
Etapa 5.4
Multiplique por .
Etapa 5.5
Reescreva como .
Toque para ver mais passagens...
Etapa 5.5.1
Use para reescrever como .
Etapa 5.5.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.5.3
Combine e .
Etapa 5.5.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.5.4.1
Cancele o fator comum.
Etapa 5.5.4.2
Reescreva a expressão.
Etapa 5.5.5
Avalie o expoente.
Etapa 5.6
Multiplique por .