Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Avalie o limite.
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Mova o limite para baixo do sinal do radical.
Etapa 1.1.2.1.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.1.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Etapa 1.1.2.3.1
Simplifique cada termo.
Etapa 1.1.2.3.1.1
Some e .
Etapa 1.1.2.3.1.2
Qualquer raiz de é .
Etapa 1.1.2.3.1.3
Multiplique por .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Etapa 1.1.3.1
Avalie o limite.
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Mova o limite para baixo do sinal do radical.
Etapa 1.1.3.1.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.1.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Etapa 1.1.3.3.1
Simplifique cada termo.
Etapa 1.1.3.3.1.1
Some e .
Etapa 1.1.3.3.1.2
Reescreva como .
Etapa 1.1.3.3.1.3
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 1.1.3.3.1.4
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Etapa 1.3.3.1
Use para reescrever como .
Etapa 1.3.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.3.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.3.7
Combine e .
Etapa 1.3.3.8
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.3.9
Simplifique o numerador.
Etapa 1.3.3.9.1
Multiplique por .
Etapa 1.3.3.9.2
Subtraia de .
Etapa 1.3.3.10
Mova o número negativo para a frente da fração.
Etapa 1.3.3.11
Some e .
Etapa 1.3.3.12
Combine e .
Etapa 1.3.3.13
Multiplique por .
Etapa 1.3.3.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Some e .
Etapa 1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7
Avalie .
Etapa 1.3.7.1
Use para reescrever como .
Etapa 1.3.7.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.7.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.7.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.7.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.7.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.7.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.7.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.7.7
Combine e .
Etapa 1.3.7.8
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.7.9
Simplifique o numerador.
Etapa 1.3.7.9.1
Multiplique por .
Etapa 1.3.7.9.2
Subtraia de .
Etapa 1.3.7.10
Mova o número negativo para a frente da fração.
Etapa 1.3.7.11
Some e .
Etapa 1.3.7.12
Combine e .
Etapa 1.3.7.13
Multiplique por .
Etapa 1.3.7.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9
Some e .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Converta expoentes fracionários em radicais.
Etapa 1.5.1
Reescreva como .
Etapa 1.5.2
Reescreva como .
Etapa 1.6
Combine os fatores.
Etapa 1.6.1
Combine e .
Etapa 1.6.2
Combine e .
Etapa 1.7
Cancele o fator comum de .
Etapa 1.7.1
Cancele o fator comum.
Etapa 1.7.2
Reescreva a expressão.
Etapa 2
Etapa 2.1
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.2
Mova o limite para baixo do sinal do radical.
Etapa 2.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.5
Mova o limite para baixo do sinal do radical.
Etapa 2.6
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.7
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3
Etapa 3.1
Avalie o limite de substituindo por .
Etapa 3.2
Avalie o limite de substituindo por .
Etapa 4
Etapa 4.1
Simplifique o numerador.
Etapa 4.1.1
Some e .
Etapa 4.1.2
Reescreva como .
Etapa 4.1.3
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.2
Simplifique o denominador.
Etapa 4.2.1
Some e .
Etapa 4.2.2
Qualquer raiz de é .
Etapa 4.3
Divida por .