Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Etapa 1.2.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.2.2
A derivada de em relação a é .
Etapa 1.2.2.3
Substitua todas as ocorrências de por .
Etapa 1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.6
Multiplique por .
Etapa 1.2.7
Multiplique por .
Etapa 1.2.8
Multiplique por .
Etapa 1.3
Avalie .
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.3
A derivada de em relação a é .
Etapa 1.3.4
Multiplique por .
Etapa 1.4
Reordene os termos.
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.3.2
A derivada de em relação a é .
Etapa 2.2.3.3
Substitua todas as ocorrências de por .
Etapa 2.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.7
Multiplique por .
Etapa 2.2.8
Mova para a esquerda de .
Etapa 2.2.9
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3.3
A derivada de em relação a é .
Etapa 2.3.4
A derivada de em relação a é .
Etapa 2.3.5
Eleve à potência de .
Etapa 2.3.6
Eleve à potência de .
Etapa 2.3.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.8
Some e .
Etapa 2.3.9
Eleve à potência de .
Etapa 2.3.10
Eleve à potência de .
Etapa 2.3.11
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.12
Some e .
Etapa 2.4
Avalie .
Etapa 2.4.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.4.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.4.1.2
A derivada de em relação a é .
Etapa 2.4.1.3
Substitua todas as ocorrências de por .
Etapa 2.4.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.4
Multiplique por .
Etapa 2.4.5
Multiplique por .
Etapa 2.5
Simplifique.
Etapa 2.5.1
Aplique a propriedade distributiva.
Etapa 2.5.2
Aplique a propriedade distributiva.
Etapa 2.5.3
Combine os termos.
Etapa 2.5.3.1
Multiplique por .
Etapa 2.5.3.2
Multiplique por .
Etapa 2.5.3.3
Subtraia de .