Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Etapa 4.1
Deixe . Encontre .
Etapa 4.1.1
Diferencie .
Etapa 4.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4
Multiplique por .
Etapa 4.2
Reescreva o problema usando e .
Etapa 5
Etapa 5.1
Multiplique pelo inverso da fração para dividir por .
Etapa 5.2
Multiplique por .
Etapa 5.3
Mova para a esquerda de .
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
Use a fórmula do arco metade para reescrever como .
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Etapa 9.1
Combine e .
Etapa 9.2
Cancele o fator comum de .
Etapa 9.2.1
Cancele o fator comum.
Etapa 9.2.2
Reescreva a expressão.
Etapa 9.3
Multiplique por .
Etapa 10
Divida a integral única em várias integrais.
Etapa 11
Aplique a regra da constante.
Etapa 12
Etapa 12.1
Deixe . Encontre .
Etapa 12.1.1
Diferencie .
Etapa 12.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.1.4
Multiplique por .
Etapa 12.2
Reescreva o problema usando e .
Etapa 13
Combine e .
Etapa 14
Como é constante com relação a , mova para fora da integral.
Etapa 15
A integral de com relação a é .
Etapa 16
Simplifique.
Etapa 17
Etapa 17.1
Substitua todas as ocorrências de por .
Etapa 17.2
Substitua todas as ocorrências de por .
Etapa 17.3
Substitua todas as ocorrências de por .
Etapa 18
Combine e .
Etapa 19
Etapa 19.1
Cancele o fator comum de .
Etapa 19.1.1
Cancele o fator comum.
Etapa 19.1.2
Divida por .
Etapa 19.2
Reordene os termos.
Etapa 20
A resposta é a primitiva da função .