Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
À medida que se aproxima de dos radicais, o valor chega a .
Etapa 1.1.3
O limite no infinito de um polinômio cujo coeficiente de maior ordem é positivo é o infinito.
Etapa 1.1.4
Infinito divido por infinito é indefinido.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4
Cancele o fator comum de .
Etapa 1.4.1
Cancele o fator comum.
Etapa 1.4.2
Reescreva a expressão.
Etapa 2
Avalie o limite de , que é constante à medida que se aproxima de .