Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie.
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2
Avalie .
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Reescreva como .
Etapa 1.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3.3
Substitua todas as ocorrências de por .
Etapa 1.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.5
Multiplique os expoentes em .
Etapa 1.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 1.2.5.2
Multiplique por .
Etapa 1.2.6
Multiplique por .
Etapa 1.2.7
Multiplique por somando os expoentes.
Etapa 1.2.7.1
Mova .
Etapa 1.2.7.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.2.7.3
Subtraia de .
Etapa 1.2.8
Multiplique por .
Etapa 1.3
Avalie .
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5
Simplifique.
Etapa 1.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.5.2
Combine os termos.
Etapa 1.5.2.1
Combine e .
Etapa 1.5.2.2
Some e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Reescreva como .
Etapa 2.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3.3
Substitua todas as ocorrências de por .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Multiplique os expoentes em .
Etapa 2.3.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.5.2
Multiplique por .
Etapa 2.3.6
Multiplique por .
Etapa 2.3.7
Multiplique por somando os expoentes.
Etapa 2.3.7.1
Mova .
Etapa 2.3.7.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.7.3
Subtraia de .
Etapa 2.3.8
Multiplique por .
Etapa 2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5
Simplifique.
Etapa 2.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.5.2
Combine os termos.
Etapa 2.5.2.1
Combine e .
Etapa 2.5.2.2
Mova o número negativo para a frente da fração.
Etapa 2.5.2.3
Some e .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Avalie .
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Reescreva como .
Etapa 3.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3.3
Substitua todas as ocorrências de por .
Etapa 3.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.5
Multiplique os expoentes em .
Etapa 3.3.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.3.5.2
Multiplique por .
Etapa 3.3.6
Multiplique por .
Etapa 3.3.7
Multiplique por somando os expoentes.
Etapa 3.3.7.1
Mova .
Etapa 3.3.7.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.3.7.3
Subtraia de .
Etapa 3.3.8
Multiplique por .
Etapa 3.4
Simplifique.
Etapa 3.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 3.4.2
Combine e .
Etapa 4
Etapa 4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.2
Avalie .
Etapa 4.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.3
Multiplique por .
Etapa 4.3
Avalie .
Etapa 4.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.2
Reescreva como .
Etapa 4.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.3.3
Substitua todas as ocorrências de por .
Etapa 4.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.5
Multiplique os expoentes em .
Etapa 4.3.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.3.5.2
Multiplique por .
Etapa 4.3.6
Multiplique por .
Etapa 4.3.7
Multiplique por somando os expoentes.
Etapa 4.3.7.1
Mova .
Etapa 4.3.7.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.3.7.3
Subtraia de .
Etapa 4.3.8
Multiplique por .
Etapa 4.4
Simplifique.
Etapa 4.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 4.4.2
Combine os termos.
Etapa 4.4.2.1
Combine e .
Etapa 4.4.2.2
Mova o número negativo para a frente da fração.
Etapa 5
A quarta derivada de com relação a é .