Insira um problema...
Cálculo Exemplos
Etapa 1
Deixe . Substitua em todas as ocorrências de .
Etapa 2
Etapa 2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 2.1.3
Substitua todas as ocorrências de por .
Etapa 2.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5
Reescreva como .
Etapa 3
Substitua por .
Etapa 4
Substitua a derivada na equação diferencial.
Etapa 5
Etapa 5.1
Resolva .
Etapa 5.1.1
Subtraia dos dois lados da equação.
Etapa 5.1.2
Divida cada termo em por e simplifique.
Etapa 5.1.2.1
Divida cada termo em por .
Etapa 5.1.2.2
Simplifique o lado esquerdo.
Etapa 5.1.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 5.1.2.2.2
Divida por .
Etapa 5.1.2.3
Simplifique o lado direito.
Etapa 5.1.2.3.1
Simplifique cada termo.
Etapa 5.1.2.3.1.1
Mova o número negativo do denominador de .
Etapa 5.1.2.3.1.2
Reescreva como .
Etapa 5.1.2.3.1.3
Mova o número negativo do denominador de .
Etapa 5.1.2.3.1.4
Reescreva como .
Etapa 5.1.2.3.1.5
Multiplique por .
Etapa 5.1.3
Multiplique os dois lados por .
Etapa 5.1.4
Simplifique.
Etapa 5.1.4.1
Simplifique o lado esquerdo.
Etapa 5.1.4.1.1
Cancele o fator comum de .
Etapa 5.1.4.1.1.1
Cancele o fator comum.
Etapa 5.1.4.1.1.2
Reescreva a expressão.
Etapa 5.1.4.2
Simplifique o lado direito.
Etapa 5.1.4.2.1
Simplifique .
Etapa 5.1.4.2.1.1
Aplique a propriedade distributiva.
Etapa 5.1.4.2.1.2
Multiplique por somando os expoentes.
Etapa 5.1.4.2.1.2.1
Mova .
Etapa 5.1.4.2.1.2.2
Multiplique por .
Etapa 5.1.4.2.1.3
Mova .
Etapa 5.1.4.2.1.4
Mova .
Etapa 5.1.5
Reescreva como .
Etapa 5.2
Fatore de .
Etapa 5.2.1
Fatore de .
Etapa 5.2.2
Fatore de .
Etapa 5.2.3
Fatore de .
Etapa 5.3
Multiplique os dois lados por .
Etapa 5.4
Cancele o fator comum de .
Etapa 5.4.1
Fatore de .
Etapa 5.4.2
Cancele o fator comum.
Etapa 5.4.3
Reescreva a expressão.
Etapa 5.5
Reescreva a equação.
Etapa 6
Etapa 6.1
Determine uma integral de cada lado.
Etapa 6.2
Integre o lado esquerdo.
Etapa 6.2.1
Escreva a fração usando a decomposição da fração parcial.
Etapa 6.2.1.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 6.2.1.1.1
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 6.2.1.1.2
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 6.2.1.1.3
Cancele o fator comum de .
Etapa 6.2.1.1.3.1
Cancele o fator comum.
Etapa 6.2.1.1.3.2
Reescreva a expressão.
Etapa 6.2.1.1.4
Cancele o fator comum de .
Etapa 6.2.1.1.4.1
Cancele o fator comum.
Etapa 6.2.1.1.4.2
Reescreva a expressão.
Etapa 6.2.1.1.5
Simplifique cada termo.
Etapa 6.2.1.1.5.1
Cancele o fator comum de .
Etapa 6.2.1.1.5.1.1
Cancele o fator comum.
Etapa 6.2.1.1.5.1.2
Divida por .
Etapa 6.2.1.1.5.2
Aplique a propriedade distributiva.
Etapa 6.2.1.1.5.3
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 6.2.1.1.5.4
Mova para a esquerda de .
Etapa 6.2.1.1.5.5
Divida por .
Etapa 6.2.1.1.6
Simplifique a expressão.
Etapa 6.2.1.1.6.1
Mova .
Etapa 6.2.1.1.6.2
Reordene e .
Etapa 6.2.1.1.6.3
Mova .
Etapa 6.2.1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 6.2.1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 6.2.1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 6.2.1.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 6.2.1.3
Resolva o sistema de equações.
Etapa 6.2.1.3.1
Resolva em .
Etapa 6.2.1.3.1.1
Reescreva a equação como .
Etapa 6.2.1.3.1.2
Divida cada termo em por e simplifique.
Etapa 6.2.1.3.1.2.1
Divida cada termo em por .
Etapa 6.2.1.3.1.2.2
Simplifique o lado esquerdo.
Etapa 6.2.1.3.1.2.2.1
Cancele o fator comum de .
Etapa 6.2.1.3.1.2.2.1.1
Cancele o fator comum.
Etapa 6.2.1.3.1.2.2.1.2
Divida por .
Etapa 6.2.1.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 6.2.1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 6.2.1.3.2.2
Simplifique o lado direito.
Etapa 6.2.1.3.2.2.1
Reescreva como .
Etapa 6.2.1.3.3
Resolva em .
Etapa 6.2.1.3.3.1
Reescreva a equação como .
Etapa 6.2.1.3.3.2
Some aos dois lados da equação.
Etapa 6.2.1.3.4
Resolva o sistema de equações.
Etapa 6.2.1.3.5
Liste todas as soluções.
Etapa 6.2.1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 6.2.1.5
Simplifique.
Etapa 6.2.1.5.1
Multiplique o numerador pelo inverso do denominador.
Etapa 6.2.1.5.2
Multiplique por .
Etapa 6.2.1.5.3
Multiplique o numerador pelo inverso do denominador.
Etapa 6.2.1.5.4
Multiplique por .
Etapa 6.2.1.5.5
Reescreva como .
Etapa 6.2.1.5.6
Fatore de .
Etapa 6.2.1.5.7
Reescreva os negativos.
Etapa 6.2.1.5.7.1
Reescreva como .
Etapa 6.2.1.5.7.2
Mova o número negativo para a frente da fração.
Etapa 6.2.2
Divida a integral única em várias integrais.
Etapa 6.2.3
Como é constante com relação a , mova para fora da integral.
Etapa 6.2.4
A integral de com relação a é .
Etapa 6.2.5
Como é constante com relação a , mova para fora da integral.
Etapa 6.2.6
Como é constante com relação a , mova para fora da integral.
Etapa 6.2.7
Deixe . Depois, . Reescreva usando e .
Etapa 6.2.7.1
Deixe . Encontre .
Etapa 6.2.7.1.1
Diferencie .
Etapa 6.2.7.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 6.2.7.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.2.7.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.2.7.1.5
Some e .
Etapa 6.2.7.2
Reescreva o problema usando e .
Etapa 6.2.8
A integral de com relação a é .
Etapa 6.2.9
Simplifique.
Etapa 6.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 6.4
Agrupe a constante de integração no lado direito como .
Etapa 7
Etapa 7.1
Simplifique as expressões na equação.
Etapa 7.1.1
Simplifique o lado esquerdo.
Etapa 7.1.1.1
Simplifique cada termo.
Etapa 7.1.1.1.1
Combine e .
Etapa 7.1.1.1.2
Combine e .
Etapa 7.1.2
Simplifique o lado direito.
Etapa 7.1.2.1
Combine e .
Etapa 7.2
Multiplique cada termo em por para eliminar as frações.
Etapa 7.2.1
Multiplique cada termo em por .
Etapa 7.2.2
Simplifique o lado esquerdo.
Etapa 7.2.2.1
Simplifique cada termo.
Etapa 7.2.2.1.1
Cancele o fator comum de .
Etapa 7.2.2.1.1.1
Cancele o fator comum.
Etapa 7.2.2.1.1.2
Reescreva a expressão.
Etapa 7.2.2.1.2
Cancele o fator comum de .
Etapa 7.2.2.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 7.2.2.1.2.2
Cancele o fator comum.
Etapa 7.2.2.1.2.3
Reescreva a expressão.
Etapa 7.2.3
Simplifique o lado direito.
Etapa 7.2.3.1
Simplifique cada termo.
Etapa 7.2.3.1.1
Cancele o fator comum de .
Etapa 7.2.3.1.1.1
Cancele o fator comum.
Etapa 7.2.3.1.1.2
Reescreva a expressão.
Etapa 7.2.3.1.2
Mova para a esquerda de .
Etapa 7.3
Use a propriedade dos logaritmos do quociente, .
Etapa 7.4
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 7.5
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 7.6
Resolva .
Etapa 7.6.1
Reescreva a equação como .
Etapa 7.6.2
Multiplique os dois lados por .
Etapa 7.6.3
Simplifique o lado esquerdo.
Etapa 7.6.3.1
Cancele o fator comum de .
Etapa 7.6.3.1.1
Cancele o fator comum.
Etapa 7.6.3.1.2
Reescreva a expressão.
Etapa 7.6.4
Resolva .
Etapa 7.6.4.1
Reordene os fatores em .
Etapa 7.6.4.2
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 8
Etapa 8.1
Simplifique a constante de integração.
Etapa 8.2
Reescreva como .
Etapa 8.3
Reordene e .
Etapa 8.4
Combine constantes com o sinal de mais ou menos.
Etapa 9
Substitua todas as ocorrências de por .
Etapa 10
Etapa 10.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 10.2
Expanda o lado esquerdo.
Etapa 10.2.1
Expanda movendo para fora do logaritmo.
Etapa 10.2.2
O logaritmo natural de é .
Etapa 10.2.3
Multiplique por .
Etapa 10.3
Expanda o lado direito.
Etapa 10.3.1
Reescreva como .
Etapa 10.3.2
Reescreva como .
Etapa 10.3.3
Expanda movendo para fora do logaritmo.
Etapa 10.3.4
O logaritmo natural de é .
Etapa 10.3.5
Multiplique por .
Etapa 10.4
Simplifique o lado direito.
Etapa 10.4.1
Use a propriedade dos logaritmos do produto, .
Etapa 10.5
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 10.5.1
Subtraia dos dois lados da equação.
Etapa 10.5.2
Combine os termos opostos em .
Etapa 10.5.2.1
Subtraia de .
Etapa 10.5.2.2
Some e .
Etapa 10.6
Divida cada termo em por e simplifique.
Etapa 10.6.1
Divida cada termo em por .
Etapa 10.6.2
Simplifique o lado esquerdo.
Etapa 10.6.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 10.6.2.2
Divida por .
Etapa 10.6.3
Simplifique o lado direito.
Etapa 10.6.3.1
Mova o número negativo do denominador de .
Etapa 10.6.3.2
Reescreva como .