Insira um problema...
Cálculo Exemplos
,
Etapa 1
Etapa 1.1
Reagrupe os fatores.
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Etapa 1.3.1
Combine.
Etapa 1.3.2
Cancele o fator comum de .
Etapa 1.3.2.1
Fatore de .
Etapa 1.3.2.2
Cancele o fator comum.
Etapa 1.3.2.3
Reescreva a expressão.
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Etapa 2.2.1
Deixe . Depois, . Reescreva usando e .
Etapa 2.2.1.1
Deixe . Encontre .
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
A integral de com relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Deixe . Depois, . Reescreva usando e .
Etapa 2.3.2.1
Deixe . Encontre .
Etapa 2.3.2.1.1
Diferencie .
Etapa 2.3.2.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.2.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.2.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2.1.5
Some e .
Etapa 2.3.2.2
Reescreva o problema usando e .
Etapa 2.3.3
Aplique regras básicas de expoentes.
Etapa 2.3.3.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.3.2
Multiplique os expoentes em .
Etapa 2.3.3.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.3.2.2
Multiplique por .
Etapa 2.3.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.5
Simplifique.
Etapa 2.3.5.1
Reescreva como .
Etapa 2.3.5.2
Simplifique.
Etapa 2.3.5.2.1
Multiplique por .
Etapa 2.3.5.2.2
Combine e .
Etapa 2.3.5.2.3
Mova o número negativo para a frente da fração.
Etapa 2.3.6
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 3.2
Expanda o lado esquerdo.
Etapa 3.2.1
Expanda movendo para fora do logaritmo.
Etapa 3.2.2
O logaritmo natural de é .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Simplifique .
Etapa 3.3.1.1
Divida a fração em duas frações.
Etapa 3.3.1.2
Simplifique cada termo.
Etapa 3.3.1.2.1
Divida a fração em duas frações.
Etapa 3.3.1.2.2
Mova o número negativo para a frente da fração.
Etapa 3.4
Some aos dois lados da equação.
Etapa 4
Simplifique a constante de integração.
Etapa 5
Use a condição inicial para encontrar o valor de , substituindo por e por em .
Etapa 6
Etapa 6.1
Reescreva a equação como .
Etapa 6.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 6.2.1
Subtraia dos dois lados da equação.
Etapa 6.2.2
Subtraia de .
Etapa 6.3
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 6.4
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 6.5
Resolva .
Etapa 6.5.1
Reescreva a equação como .
Etapa 6.5.2
Simplifique .
Etapa 6.5.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 6.5.2.2
Mova para a esquerda de .
Etapa 6.5.2.3
Simplifique os termos.
Etapa 6.5.2.3.1
Some e .
Etapa 6.5.2.3.2
Some e .
Etapa 6.5.2.3.3
Reescreva como .
Etapa 6.5.2.3.4
Fatore de .
Etapa 6.5.2.3.5
Fatore de .
Etapa 6.5.2.3.6
Mova o número negativo para a frente da fração.
Etapa 6.5.3
Qualquer coisa elevada a é .
Etapa 6.5.4
Multiplique os dois lados da equação por .
Etapa 6.5.5
Simplifique os dois lados da equação.
Etapa 6.5.5.1
Simplifique o lado esquerdo.
Etapa 6.5.5.1.1
Simplifique .
Etapa 6.5.5.1.1.1
Cancele o fator comum de .
Etapa 6.5.5.1.1.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 6.5.5.1.1.1.2
Fatore de .
Etapa 6.5.5.1.1.1.3
Cancele o fator comum.
Etapa 6.5.5.1.1.1.4
Reescreva a expressão.
Etapa 6.5.5.1.1.2
Multiplique.
Etapa 6.5.5.1.1.2.1
Multiplique por .
Etapa 6.5.5.1.1.2.2
Multiplique por .
Etapa 6.5.5.2
Simplifique o lado direito.
Etapa 6.5.5.2.1
Multiplique por .
Etapa 6.5.6
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 6.5.6.1
Subtraia dos dois lados da equação.
Etapa 6.5.6.2
Subtraia de .
Etapa 6.5.7
Divida cada termo em por e simplifique.
Etapa 6.5.7.1
Divida cada termo em por .
Etapa 6.5.7.2
Simplifique o lado esquerdo.
Etapa 6.5.7.2.1
Cancele o fator comum de .
Etapa 6.5.7.2.1.1
Cancele o fator comum.
Etapa 6.5.7.2.1.2
Divida por .
Etapa 6.5.7.3
Simplifique o lado direito.
Etapa 6.5.7.3.1
Cancele o fator comum de e .
Etapa 6.5.7.3.1.1
Fatore de .
Etapa 6.5.7.3.1.2
Cancele os fatores comuns.
Etapa 6.5.7.3.1.2.1
Fatore de .
Etapa 6.5.7.3.1.2.2
Cancele o fator comum.
Etapa 6.5.7.3.1.2.3
Reescreva a expressão.
Etapa 7
Etapa 7.1
Substitua por .
Etapa 7.2
Simplifique cada termo.
Etapa 7.2.1
Simplifique cada termo.
Etapa 7.2.1.1
Combine e .
Etapa 7.2.1.2
Multiplique o numerador pelo inverso do denominador.
Etapa 7.2.1.3
Multiplique por .
Etapa 7.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 7.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Etapa 7.2.3.1
Multiplique por .
Etapa 7.2.3.2
Reordene os fatores de .
Etapa 7.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 7.2.5
Multiplique por .
Etapa 7.2.6
Fatore de .
Etapa 7.2.6.1
Fatore de .
Etapa 7.2.6.2
Fatore de .
Etapa 7.2.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 7.2.8
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Etapa 7.2.8.1
Multiplique por .
Etapa 7.2.8.2
Reordene os fatores de .
Etapa 7.2.9
Combine os numeradores em relação ao denominador comum.
Etapa 7.2.10
Simplifique o numerador.
Etapa 7.2.10.1
Aplique a propriedade distributiva.
Etapa 7.2.10.2
Multiplique por .
Etapa 7.2.10.3
Mova para a esquerda de .