Insira um problema...
Cálculo Exemplos
,
Etapa 1
Etapa 1.1
Resolva .
Etapa 1.1.1
Simplifique cada termo.
Etapa 1.1.1.1
Aplique a propriedade distributiva.
Etapa 1.1.1.2
Multiplique por .
Etapa 1.1.1.3
Aplique a propriedade distributiva.
Etapa 1.1.1.4
Multiplique por .
Etapa 1.1.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 1.1.2.1
Subtraia dos dois lados da equação.
Etapa 1.1.2.2
Some aos dois lados da equação.
Etapa 1.1.3
Fatore de .
Etapa 1.1.3.1
Fatore de .
Etapa 1.1.3.2
Eleve à potência de .
Etapa 1.1.3.3
Fatore de .
Etapa 1.1.3.4
Fatore de .
Etapa 1.1.4
Divida cada termo em por e simplifique.
Etapa 1.1.4.1
Divida cada termo em por .
Etapa 1.1.4.2
Simplifique o lado esquerdo.
Etapa 1.1.4.2.1
Cancele o fator comum de .
Etapa 1.1.4.2.1.1
Cancele o fator comum.
Etapa 1.1.4.2.1.2
Divida por .
Etapa 1.1.4.3
Simplifique o lado direito.
Etapa 1.1.4.3.1
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.4.3.2
Simplifique o numerador.
Etapa 1.1.4.3.2.1
Fatore de .
Etapa 1.1.4.3.2.1.1
Fatore de .
Etapa 1.1.4.3.2.1.2
Fatore de .
Etapa 1.1.4.3.2.1.3
Fatore de .
Etapa 1.1.4.3.2.2
Reescreva como .
Etapa 1.1.4.3.3
Simplifique com fatoração.
Etapa 1.1.4.3.3.1
Fatore de .
Etapa 1.1.4.3.3.2
Reescreva como .
Etapa 1.1.4.3.3.3
Fatore de .
Etapa 1.1.4.3.3.4
Simplifique a expressão.
Etapa 1.1.4.3.3.4.1
Reescreva como .
Etapa 1.1.4.3.3.4.2
Mova o número negativo para a frente da fração.
Etapa 1.2
Reagrupe os fatores.
Etapa 1.3
Multiplique os dois lados por .
Etapa 1.4
Simplifique.
Etapa 1.4.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.4.2
Cancele o fator comum de .
Etapa 1.4.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 1.4.2.2
Fatore de .
Etapa 1.4.2.3
Cancele o fator comum.
Etapa 1.4.2.4
Reescreva a expressão.
Etapa 1.5
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Etapa 2.2.1
Deixe . Depois, . Reescreva usando e .
Etapa 2.2.1.1
Deixe . Encontre .
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
A integral de com relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.3
Multiplique por .
Etapa 2.3.4
Deixe . Depois, , então, . Reescreva usando e .
Etapa 2.3.4.1
Deixe . Encontre .
Etapa 2.3.4.1.1
Diferencie .
Etapa 2.3.4.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.4.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.4.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4.1.5
Some e .
Etapa 2.3.4.2
Reescreva o problema usando e .
Etapa 2.3.5
Simplifique.
Etapa 2.3.5.1
Multiplique por .
Etapa 2.3.5.2
Mova para a esquerda de .
Etapa 2.3.6
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.7
Simplifique.
Etapa 2.3.7.1
Combine e .
Etapa 2.3.7.2
Mova o número negativo para a frente da fração.
Etapa 2.3.8
A integral de com relação a é .
Etapa 2.3.9
Simplifique.
Etapa 2.3.10
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Simplifique o lado direito.
Etapa 3.1.1
Simplifique cada termo.
Etapa 3.1.1.1
Combine e .
Etapa 3.1.1.2
Mova para a esquerda de .
Etapa 3.2
Mova todos os termos que contêm um logaritmo para o lado esquerdo da equação.
Etapa 3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.4
Simplifique os termos.
Etapa 3.4.1
Combine e .
Etapa 3.4.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.5
Mova para a esquerda de .
Etapa 3.6
Simplifique o lado esquerdo.
Etapa 3.6.1
Simplifique .
Etapa 3.6.1.1
Simplifique o numerador.
Etapa 3.6.1.1.1
Simplifique movendo para dentro do logaritmo.
Etapa 3.6.1.1.2
Remova o valor absoluto em , porque exponenciações com potências pares são sempre positivas.
Etapa 3.6.1.1.3
Simplifique movendo para dentro do logaritmo.
Etapa 3.6.1.1.4
Use a propriedade dos logaritmos do produto, .
Etapa 3.6.1.2
Reescreva como .
Etapa 3.6.1.3
Simplifique movendo para dentro do logaritmo.
Etapa 3.6.1.4
Aplique a regra do produto a .
Etapa 3.6.1.5
Multiplique os expoentes em .
Etapa 3.6.1.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.6.1.5.2
Cancele o fator comum de .
Etapa 3.6.1.5.2.1
Cancele o fator comum.
Etapa 3.6.1.5.2.2
Reescreva a expressão.
Etapa 3.6.1.6
Simplifique.
Etapa 3.6.1.7
Multiplique os expoentes em .
Etapa 3.6.1.7.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.6.1.7.2
Combine e .
Etapa 3.6.1.8
Aplique a propriedade distributiva.
Etapa 3.6.1.9
Reescreva como .
Etapa 3.7
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.8
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.9
Resolva .
Etapa 3.9.1
Reescreva a equação como .
Etapa 3.9.2
Some aos dois lados da equação.
Etapa 3.9.3
Divida cada termo em por e simplifique.
Etapa 3.9.3.1
Divida cada termo em por .
Etapa 3.9.3.2
Simplifique o lado esquerdo.
Etapa 3.9.3.2.1
Cancele o fator comum.
Etapa 3.9.3.2.2
Divida por .
Etapa 3.9.3.3
Simplifique o lado direito.
Etapa 3.9.3.3.1
Combine os numeradores em relação ao denominador comum.
Etapa 4
Simplifique a constante de integração.
Etapa 5
Use a condição inicial para encontrar o valor de , substituindo por e por em .
Etapa 6
Etapa 6.1
Reescreva a equação como .
Etapa 6.2
Multiplique os dois lados da equação por .
Etapa 6.3
Simplifique os dois lados da equação.
Etapa 6.3.1
Simplifique o lado esquerdo.
Etapa 6.3.1.1
Simplifique .
Etapa 6.3.1.1.1
Cancele o fator comum de .
Etapa 6.3.1.1.1.1
Cancele o fator comum.
Etapa 6.3.1.1.1.2
Reescreva a expressão.
Etapa 6.3.1.1.2
Simplifique cada termo.
Etapa 6.3.1.1.2.1
Elevar a qualquer potência positiva produz .
Etapa 6.3.1.1.2.2
Some e .
Etapa 6.3.1.1.2.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.3.1.1.2.4
Um elevado a qualquer potência é um.
Etapa 6.3.2
Simplifique o lado direito.
Etapa 6.3.2.1
Simplifique .
Etapa 6.3.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 6.3.2.1.2
Some e .
Etapa 6.3.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.3.2.1.4
Um elevado a qualquer potência é um.
Etapa 6.3.2.1.5
Multiplique por .
Etapa 6.4
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 6.4.1
Subtraia dos dois lados da equação.
Etapa 6.4.2
Subtraia de .
Etapa 7
Etapa 7.1
Substitua por .