Cálculo Exemplos

Resolve a equação diferencial (x^2-y^2)dx-x(yd)y=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Subtraia de .
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4
Multiplique por .
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
O lado esquerdo não é igual ao direito. Portanto, a equação não é uma identidade.
não é uma identidade.
não é uma identidade.
Etapa 4
Encontre o fator de integração .
Toque para ver mais passagens...
Etapa 4.1
Substitua por .
Etapa 4.2
Substitua por .
Etapa 4.3
Substitua por .
Toque para ver mais passagens...
Etapa 4.3.1
Substitua por .
Etapa 4.3.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.3.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 4.3.2.1.1
Fatore de .
Etapa 4.3.2.1.2
Fatore de .
Etapa 4.3.2.1.3
Fatore de .
Etapa 4.3.2.2
Multiplique por .
Etapa 4.3.2.3
Some e .
Etapa 4.3.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.3.3.1
Cancele o fator comum.
Etapa 4.3.3.2
Reescreva a expressão.
Etapa 4.3.4
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4.4
Encontre o fator de integração .
Etapa 5
Avalie a integral .
Toque para ver mais passagens...
Etapa 5.1
A integral de com relação a é .
Etapa 5.2
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique.
Etapa 5.2.2
Potenciação e logaritmo são funções inversas.
Etapa 6
Multiplique ambos os lados de pelo fator de integração .
Toque para ver mais passagens...
Etapa 6.1
Multiplique por .
Etapa 6.2
Aplique a propriedade distributiva.
Etapa 6.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 6.3.1
Multiplique por .
Toque para ver mais passagens...
Etapa 6.3.1.1
Eleve à potência de .
Etapa 6.3.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 6.3.2
Some e .
Etapa 6.4
Multiplique por .
Etapa 6.5
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 6.5.1
Mova .
Etapa 6.5.2
Multiplique por .
Etapa 7
A integral de é .
Etapa 8
Integre para encontrar .
Toque para ver mais passagens...
Etapa 8.1
Como é constante com relação a , mova para fora da integral.
Etapa 8.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 8.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 8.3.1
Reescreva como .
Etapa 8.3.2
Simplifique.
Toque para ver mais passagens...
Etapa 8.3.2.1
Combine e .
Etapa 8.3.2.2
Combine e .
Etapa 8.3.3
Simplifique.
Toque para ver mais passagens...
Etapa 8.3.3.1
Reordene os termos.
Etapa 8.3.3.2
Remova os parênteses.
Etapa 8.3.3.3
Remova os parênteses.
Etapa 9
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 10
Defina .
Etapa 11
Encontre .
Toque para ver mais passagens...
Etapa 11.1
Diferencie em relação a .
Etapa 11.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 11.3
Avalie .
Toque para ver mais passagens...
Etapa 11.3.1
Combine e .
Etapa 11.3.2
Combine e .
Etapa 11.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 11.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 11.3.5
Multiplique por .
Etapa 11.3.6
Combine e .
Etapa 11.3.7
Combine e .
Etapa 11.3.8
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 11.3.8.1
Fatore de .
Etapa 11.3.8.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 11.3.8.2.1
Fatore de .
Etapa 11.3.8.2.2
Cancele o fator comum.
Etapa 11.3.8.2.3
Reescreva a expressão.
Etapa 11.3.8.2.4
Divida por .
Etapa 11.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 11.5
Reordene os termos.
Etapa 12
Resolva .
Toque para ver mais passagens...
Etapa 12.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 12.1.1
Some aos dois lados da equação.
Etapa 12.1.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 12.1.2.1
Some e .
Etapa 12.1.2.2
Some e .
Etapa 13
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 13.1
Integre ambos os lados de .
Etapa 13.2
Avalie .
Etapa 13.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 14
Substitua por em .
Etapa 15
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 15.1
Combine e .
Etapa 15.2
Combine e .
Etapa 15.3
Combine e .