Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Reescreva.
Etapa 2
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3
Etapa 3.1
Diferencie em relação a .
Etapa 3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5
Some e .
Etapa 4
Etapa 4.1
Substitua por e por .
Etapa 4.2
O lado esquerdo não é igual ao direito. Portanto, a equação não é uma identidade.
não é uma identidade.
não é uma identidade.
Etapa 5
Etapa 5.1
Substitua por .
Etapa 5.2
Substitua por .
Etapa 5.3
Substitua por .
Etapa 5.3.1
Substitua por .
Etapa 5.3.2
Subtraia de .
Etapa 5.3.3
Substitua por .
Etapa 5.4
Encontre o fator de integração .
Etapa 6
Etapa 6.1
Como é constante com relação a , mova para fora da integral.
Etapa 6.2
A integral de com relação a é .
Etapa 6.3
Simplifique.
Etapa 6.4
Simplifique cada termo.
Etapa 6.4.1
Simplifique movendo para dentro do logaritmo.
Etapa 6.4.2
Potenciação e logaritmo são funções inversas.
Etapa 6.4.3
Reescreva a expressão usando a regra do expoente negativo .
Etapa 7
Etapa 7.1
Multiplique por .
Etapa 7.2
Cancele o fator comum de .
Etapa 7.2.1
Cancele o fator comum.
Etapa 7.2.2
Reescreva a expressão.
Etapa 7.3
Multiplique por .
Etapa 7.4
Multiplique por .
Etapa 8
A integral de é .
Etapa 9
Etapa 9.1
Aplique a regra da constante.
Etapa 10
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 11
Defina .
Etapa 12
Etapa 12.1
Diferencie em relação a .
Etapa 12.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 12.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 12.5
Some e .
Etapa 13
Etapa 13.1
Integre ambos os lados de .
Etapa 13.2
Avalie .
Etapa 13.3
Divida a fração em diversas frações.
Etapa 13.4
Divida a integral única em várias integrais.
Etapa 13.5
Cancele o fator comum de .
Etapa 13.5.1
Cancele o fator comum.
Etapa 13.5.2
Divida por .
Etapa 13.6
Aplique a regra da constante.
Etapa 13.7
Como é constante com relação a , mova para fora da integral.
Etapa 13.8
A integral de com relação a é .
Etapa 13.9
Simplifique.
Etapa 14
Substitua por em .