Cálculo Exemplos

Resolve a equação diferencial xdy+(y+2yx^2-2x)dx=0
Etapa 1
Reescreva a equação diferencial para ajustá-la à técnica de equação diferencial exata.
Toque para ver mais passagens...
Etapa 1.1
Reescreva.
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5
Simplifique.
Toque para ver mais passagens...
Etapa 2.5.1
Some e .
Etapa 2.5.2
Reordene os termos.
Etapa 3
Encontre em .
Toque para ver mais passagens...
Etapa 3.1
Diferencie em relação a .
Etapa 3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4
Verifique se .
Toque para ver mais passagens...
Etapa 4.1
Substitua por e por .
Etapa 4.2
O lado esquerdo não é igual ao direito. Portanto, a equação não é uma identidade.
não é uma identidade.
não é uma identidade.
Etapa 5
Encontre o fator de integração .
Toque para ver mais passagens...
Etapa 5.1
Substitua por .
Etapa 5.2
Substitua por .
Etapa 5.3
Substitua por .
Toque para ver mais passagens...
Etapa 5.3.1
Substitua por .
Etapa 5.3.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.3.2.1
Subtraia de .
Etapa 5.3.2.2
Some e .
Etapa 5.3.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 5.3.3.1
Fatore de .
Etapa 5.3.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 5.3.3.2.1
Eleve à potência de .
Etapa 5.3.3.2.2
Fatore de .
Etapa 5.3.3.2.3
Cancele o fator comum.
Etapa 5.3.3.2.4
Reescreva a expressão.
Etapa 5.3.3.2.5
Divida por .
Etapa 5.4
Encontre o fator de integração .
Etapa 6
Avalie a integral .
Toque para ver mais passagens...
Etapa 6.1
Como é constante com relação a , mova para fora da integral.
Etapa 6.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 6.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 6.3.1
Reescreva como .
Etapa 6.3.2
Simplifique.
Toque para ver mais passagens...
Etapa 6.3.2.1
Combine e .
Etapa 6.3.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.2.2.1
Cancele o fator comum.
Etapa 6.3.2.2.2
Reescreva a expressão.
Etapa 6.3.2.3
Multiplique por .
Etapa 7
Multiplique ambos os lados de pelo fator de integração .
Toque para ver mais passagens...
Etapa 7.1
Multiplique por .
Etapa 7.2
Aplique a propriedade distributiva.
Etapa 7.3
Multiplique por .
Etapa 8
A integral de é .
Etapa 9
Integre para encontrar .
Toque para ver mais passagens...
Etapa 9.1
Aplique a regra da constante.
Etapa 10
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 11
Defina .
Etapa 12
Encontre .
Toque para ver mais passagens...
Etapa 12.1
Diferencie em relação a .
Etapa 12.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 12.3
Avalie .
Toque para ver mais passagens...
Etapa 12.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.3.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 12.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 12.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 12.3.3.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 12.3.3.3
Substitua todas as ocorrências de por .
Etapa 12.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.3.6
Eleve à potência de .
Etapa 12.3.7
Eleve à potência de .
Etapa 12.3.8
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 12.3.9
Some e .
Etapa 12.3.10
Mova para a esquerda de .
Etapa 12.3.11
Multiplique por .
Etapa 12.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 12.5
Simplifique.
Toque para ver mais passagens...
Etapa 12.5.1
Aplique a propriedade distributiva.
Etapa 12.5.2
Reordene os termos.
Etapa 12.5.3
Reordene os fatores em .
Etapa 13
Resolva .
Toque para ver mais passagens...
Etapa 13.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 13.1.1
Subtraia dos dois lados da equação.
Etapa 13.1.2
Subtraia dos dois lados da equação.
Etapa 13.1.3
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 13.1.3.1
Reorganize os fatores nos termos e .
Etapa 13.1.3.2
Subtraia de .
Etapa 13.1.3.3
Some e .
Etapa 13.1.3.4
Subtraia de .
Etapa 13.1.3.5
Some e .
Etapa 14
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 14.1
Integre ambos os lados de .
Etapa 14.2
Avalie .
Etapa 14.3
Como é constante com relação a , mova para fora da integral.
Etapa 14.4
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 14.4.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 14.4.1.1
Diferencie .
Etapa 14.4.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 14.4.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 14.4.1.2.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 14.4.1.2.3
Substitua todas as ocorrências de por .
Etapa 14.4.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 14.4.1.4
Simplifique.
Toque para ver mais passagens...
Etapa 14.4.1.4.1
Reordene os fatores de .
Etapa 14.4.1.4.2
Reordene os fatores em .
Etapa 14.4.2
Reescreva o problema usando e .
Etapa 14.5
Aplique a regra da constante.
Etapa 14.6
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 14.6.1
Reescreva como .
Etapa 14.6.2
Simplifique.
Toque para ver mais passagens...
Etapa 14.6.2.1
Combine e .
Etapa 14.6.2.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 14.6.2.2.1
Fatore de .
Etapa 14.6.2.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 14.6.2.2.2.1
Fatore de .
Etapa 14.6.2.2.2.2
Cancele o fator comum.
Etapa 14.6.2.2.2.3
Reescreva a expressão.
Etapa 14.6.2.2.2.4
Divida por .
Etapa 14.6.3
Substitua todas as ocorrências de por .
Etapa 15
Substitua por em .
Etapa 16
Reordene os fatores em .