Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=(14xy)/(( logaritmo natural de y)^10)
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Reagrupe os fatores.
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.3.2
Combine e .
Etapa 1.3.3
Combine e .
Etapa 1.3.4
Combine.
Etapa 1.3.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.5.1
Cancele o fator comum.
Etapa 1.3.5.2
Reescreva a expressão.
Etapa 1.3.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.6.1
Cancele o fator comum.
Etapa 1.3.6.2
Divida por .
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
A derivada de em relação a é .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.3.3.1
Reescreva como .
Etapa 2.3.3.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.3.2.1
Combine e .
Etapa 2.3.3.2.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.3.3.2.2.1
Fatore de .
Etapa 2.3.3.2.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.3.3.2.2.2.1
Fatore de .
Etapa 2.3.3.2.2.2.2
Cancele o fator comum.
Etapa 2.3.3.2.2.2.3
Reescreva a expressão.
Etapa 2.3.3.2.2.2.4
Divida por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Combine e .
Etapa 3.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.1.2.1
Cancele o fator comum.
Etapa 3.2.1.1.2.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Aplique a propriedade distributiva.
Etapa 3.2.2.1.2
Multiplique por .
Etapa 3.3
Resolva .
Toque para ver mais passagens...
Etapa 3.3.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.3.2
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.3.3
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.3.4
Resolva .
Toque para ver mais passagens...
Etapa 3.3.4.1
Reescreva a equação como .
Etapa 3.3.4.2
Fatore de .
Toque para ver mais passagens...
Etapa 3.3.4.2.1
Fatore de .
Etapa 3.3.4.2.2
Fatore de .