Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=(3+y)/(1-2x)
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Multiplique os dois lados por .
Etapa 1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.1
Cancele o fator comum.
Etapa 1.2.2
Reescreva a expressão.
Etapa 1.3
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
A integral de com relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.1.1.1
Diferencie .
Etapa 2.3.1.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.3.1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.1.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.1.1.3.3
Multiplique por .
Etapa 2.3.1.1.4
Subtraia de .
Etapa 2.3.1.2
Reescreva o problema usando e .
Etapa 2.3.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.2.1
Mova o número negativo para a frente da fração.
Etapa 2.3.2.2
Multiplique por .
Etapa 2.3.2.3
Mova para a esquerda de .
Etapa 2.3.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.5
A integral de com relação a é .
Etapa 2.3.6
Simplifique.
Etapa 2.3.7
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.1.1
Combine e .
Etapa 3.2
Mova todos os termos que contêm um logaritmo para o lado esquerdo da equação.
Etapa 3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.4
Simplifique os termos.
Toque para ver mais passagens...
Etapa 3.4.1
Combine e .
Etapa 3.4.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.5
Mova para a esquerda de .
Etapa 3.6
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.6.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.6.1.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.6.1.1.1
Simplifique movendo para dentro do logaritmo.
Etapa 3.6.1.1.2
Remova o valor absoluto em , porque exponenciações com potências pares são sempre positivas.
Etapa 3.6.1.1.3
Use a propriedade dos logaritmos do produto, .
Etapa 3.6.1.2
Reescreva como .
Etapa 3.6.1.3
Simplifique movendo para dentro do logaritmo.
Etapa 3.6.1.4
Aplique a regra do produto a .
Etapa 3.6.1.5
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 3.6.1.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.6.1.5.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.6.1.5.2.1
Cancele o fator comum.
Etapa 3.6.1.5.2.2
Reescreva a expressão.
Etapa 3.6.1.6
Simplifique.
Etapa 3.6.1.7
Aplique a propriedade distributiva.
Etapa 3.7
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.8
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.9
Resolva .
Toque para ver mais passagens...
Etapa 3.9.1
Reescreva a equação como .
Etapa 3.9.2
Subtraia dos dois lados da equação.
Etapa 3.9.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.9.3.1
Divida cada termo em por .
Etapa 3.9.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.9.3.2.1
Cancele o fator comum.
Etapa 3.9.3.2.2
Divida por .
Etapa 3.9.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.9.3.3.1
Combine os numeradores em relação ao denominador comum.
Etapa 4
Simplifique a constante de integração.