Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=e^(3x)+2y
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
O fator de integração é definido pela fórmula , em que .
Toque para ver mais passagens...
Etapa 2.1
Determine a integração.
Etapa 2.2
Aplique a regra da constante.
Etapa 2.3
Remova a constante de integração.
Etapa 3
Multiplique cada termo pelo fator de integração .
Toque para ver mais passagens...
Etapa 3.1
Multiplique cada termo por .
Etapa 3.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.3.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.3.2
Some e .
Etapa 3.4
Reordene os fatores em .
Etapa 4
Reescreva o lado esquerdo como resultado da diferenciação de um produto.
Etapa 5
Determine uma integral de cada lado.
Etapa 6
Integre o lado esquerdo.
Etapa 7
A integral de com relação a é .
Etapa 8
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 8.1
Divida cada termo em por .
Etapa 8.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 8.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 8.2.1.1
Cancele o fator comum.
Etapa 8.2.1.2
Divida por .
Etapa 8.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 8.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 8.3.1.1
Fatore de .
Etapa 8.3.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 8.3.1.2.1
Multiplique por .
Etapa 8.3.1.2.2
Cancele o fator comum.
Etapa 8.3.1.2.3
Reescreva a expressão.
Etapa 8.3.1.2.4
Divida por .