Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Multiplique os dois lados por .
Etapa 1.2
Simplifique.
Etapa 1.2.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.2.2
Combine e .
Etapa 1.2.3
Cancele o fator comum de .
Etapa 1.2.3.1
Fatore de .
Etapa 1.2.3.2
Cancele o fator comum.
Etapa 1.2.3.3
Reescreva a expressão.
Etapa 1.3
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Etapa 2.2.1
Deixe . Depois, . Reescreva usando e .
Etapa 2.2.1.1
Deixe . Encontre .
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
Aplique regras básicas de expoentes.
Etapa 2.2.2.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.2.2.2
Multiplique os expoentes em .
Etapa 2.2.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.2.2.2
Multiplique por .
Etapa 2.2.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.4
Reescreva como .
Etapa 2.2.5
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.3
Simplifique a resposta.
Etapa 2.3.3.1
Reescreva como .
Etapa 2.3.3.2
Combine e .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Combine e .
Etapa 3.2
Encontre o MMC dos termos na equação.
Etapa 3.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 3.2.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 3.2.3
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 3.2.4
Como não tem fatores além de e .
é um número primo
Etapa 3.2.5
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 3.2.6
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 3.2.7
O fator de é o próprio .
ocorre vez.
Etapa 3.2.8
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3.2.9
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 3.3
Multiplique cada termo em por para eliminar as frações.
Etapa 3.3.1
Multiplique cada termo em por .
Etapa 3.3.2
Simplifique o lado esquerdo.
Etapa 3.3.2.1
Cancele o fator comum de .
Etapa 3.3.2.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.3.2.1.2
Fatore de .
Etapa 3.3.2.1.3
Cancele o fator comum.
Etapa 3.3.2.1.4
Reescreva a expressão.
Etapa 3.3.2.2
Multiplique por .
Etapa 3.3.3
Simplifique o lado direito.
Etapa 3.3.3.1
Simplifique cada termo.
Etapa 3.3.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.3.1.2
Cancele o fator comum de .
Etapa 3.3.3.1.2.1
Cancele o fator comum.
Etapa 3.3.3.1.2.2
Reescreva a expressão.
Etapa 3.3.3.1.3
Aplique a propriedade distributiva.
Etapa 3.3.3.1.4
Multiplique por .
Etapa 3.3.3.1.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.3.1.6
Aplique a propriedade distributiva.
Etapa 3.3.3.1.7
Multiplique por .
Etapa 3.4
Resolva a equação.
Etapa 3.4.1
Reescreva a equação como .
Etapa 3.4.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 3.4.2.1
Subtraia dos dois lados da equação.
Etapa 3.4.2.2
Subtraia dos dois lados da equação.
Etapa 3.4.3
Fatore de .
Etapa 3.4.3.1
Fatore de .
Etapa 3.4.3.2
Fatore de .
Etapa 3.4.3.3
Fatore de .
Etapa 3.4.4
Divida cada termo em por e simplifique.
Etapa 3.4.4.1
Divida cada termo em por .
Etapa 3.4.4.2
Simplifique o lado esquerdo.
Etapa 3.4.4.2.1
Cancele o fator comum de .
Etapa 3.4.4.2.1.1
Cancele o fator comum.
Etapa 3.4.4.2.1.2
Divida por .
Etapa 3.4.4.3
Simplifique o lado direito.
Etapa 3.4.4.3.1
Simplifique cada termo.
Etapa 3.4.4.3.1.1
Mova o número negativo para a frente da fração.
Etapa 3.4.4.3.1.2
Mova o número negativo para a frente da fração.
Etapa 3.4.4.3.1.3
Mova o número negativo para a frente da fração.
Etapa 3.4.4.3.2
Simplifique os termos.
Etapa 3.4.4.3.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 3.4.4.3.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.4.4.3.2.3
Fatore de .
Etapa 3.4.4.3.2.3.1
Fatore de .
Etapa 3.4.4.3.2.3.2
Fatore de .
Etapa 3.4.4.3.2.3.3
Fatore de .
Etapa 3.4.4.3.2.3.4
Fatore de .
Etapa 3.4.4.3.2.3.5
Fatore de .
Etapa 3.4.4.3.2.4
Reescreva como .
Etapa 3.4.4.3.2.5
Fatore de .
Etapa 3.4.4.3.2.6
Fatore de .
Etapa 3.4.4.3.2.7
Fatore de .
Etapa 3.4.4.3.2.8
Fatore de .
Etapa 3.4.4.3.2.9
Mova o número negativo para a frente da fração.
Etapa 4
Simplifique a constante de integração.