Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=1/( raiz quadrada de x+1)
Etapa 1
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Aplique a regra da constante.
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.1.1.1
Diferencie .
Etapa 2.3.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.1.5
Some e .
Etapa 2.3.1.2
Reescreva o problema usando e .
Etapa 2.3.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.3.2.1
Use para reescrever como .
Etapa 2.3.2.2
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.2.3
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.3.2.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.2.3.2
Combine e .
Etapa 2.3.2.3.3
Mova o número negativo para a frente da fração.
Etapa 2.3.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.4
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .