Cálculo Exemplos

Resolve a equação diferencial 2(dy)/(dx)-1/y=(2x)/y
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Resolva .
Toque para ver mais passagens...
Etapa 1.1.1
Subtraia dos dois lados da equação.
Etapa 1.1.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.1.2.1
Some aos dois lados da equação.
Etapa 1.1.2.2
Some aos dois lados da equação.
Etapa 1.1.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.1.3.1
Divida cada termo em por .
Etapa 1.1.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.1.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.3.2.1.1
Cancele o fator comum.
Etapa 1.1.3.2.1.2
Divida por .
Etapa 1.1.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.3.3.1.1
Multiplique o numerador pelo inverso do denominador.
Etapa 1.1.3.3.1.2
Multiplique por .
Etapa 1.1.3.3.1.3
Mova para a esquerda de .
Etapa 1.1.3.3.1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.1.3.3.1.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.3.3.1.5.1
Fatore de .
Etapa 1.1.3.3.1.5.2
Cancele o fator comum.
Etapa 1.1.3.3.1.5.3
Reescreva a expressão.
Etapa 1.2
Fatore.
Toque para ver mais passagens...
Etapa 1.2.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.2
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 1.2.2.1
Multiplique por .
Etapa 1.2.2.2
Reordene os fatores de .
Etapa 1.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.4
Mova para a esquerda de .
Etapa 1.3
Multiplique os dois lados por .
Etapa 1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.4.1
Fatore de .
Etapa 1.4.2
Cancele o fator comum.
Etapa 1.4.3
Reescreva a expressão.
Etapa 1.5
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Divida a integral única em várias integrais.
Etapa 2.3.3
Aplique a regra da constante.
Etapa 2.3.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.6
Simplifique.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Combine e .
Etapa 3.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.1.2.1
Cancele o fator comum.
Etapa 3.2.1.1.2.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.2.1.1.1
Aplique a propriedade distributiva.
Etapa 3.2.2.1.1.2
Combine e .
Etapa 3.2.2.1.1.3
Combine e .
Etapa 3.2.2.1.2
Aplique a propriedade distributiva.
Etapa 3.2.2.1.3
Simplifique.
Toque para ver mais passagens...
Etapa 3.2.2.1.3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.1.3.1.1
Cancele o fator comum.
Etapa 3.2.2.1.3.1.2
Reescreva a expressão.
Etapa 3.2.2.1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.1.3.2.1
Cancele o fator comum.
Etapa 3.2.2.1.3.2.2
Reescreva a expressão.
Etapa 3.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Simplifique a constante de integração.