Cálculo Exemplos

Resolve a equação diferencial 2x(yd)x+(6x^2+y^3)dy=0
Etapa 1
Escreva o problema como uma expressão matemática.
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4
Multiplique por .
Etapa 3
Encontre em .
Toque para ver mais passagens...
Etapa 3.1
Diferencie em relação a .
Etapa 3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3
Avalie .
Toque para ver mais passagens...
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3
Multiplique por .
Etapa 3.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Some e .
Etapa 4
Verifique se .
Toque para ver mais passagens...
Etapa 4.1
Substitua por e por .
Etapa 4.2
O lado esquerdo não é igual ao direito. Portanto, a equação não é uma identidade.
não é uma identidade.
não é uma identidade.
Etapa 5
Encontre o fator de integração .
Toque para ver mais passagens...
Etapa 5.1
Substitua por .
Etapa 5.2
Substitua por .
Etapa 5.3
Substitua por .
Toque para ver mais passagens...
Etapa 5.3.1
Substitua por .
Etapa 5.3.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.3.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 5.3.2.1.1
Fatore de .
Etapa 5.3.2.1.2
Fatore de .
Etapa 5.3.2.1.3
Fatore de .
Etapa 5.3.2.2
Multiplique por .
Etapa 5.3.2.3
Subtraia de .
Etapa 5.3.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.3.3.1
Cancele o fator comum.
Etapa 5.3.3.2
Reescreva a expressão.
Etapa 5.3.4
Substitua por .
Toque para ver mais passagens...
Etapa 5.3.4.1
Fatore de .
Etapa 5.3.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 5.3.4.2.1
Fatore de .
Etapa 5.3.4.2.2
Cancele o fator comum.
Etapa 5.3.4.2.3
Reescreva a expressão.
Etapa 5.4
Encontre o fator de integração .
Etapa 6
Avalie a integral .
Toque para ver mais passagens...
Etapa 6.1
Como é constante com relação a , mova para fora da integral.
Etapa 6.2
A integral de com relação a é .
Etapa 6.3
Simplifique.
Etapa 6.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.4.1
Simplifique movendo para dentro do logaritmo.
Etapa 6.4.2
Potenciação e logaritmo são funções inversas.
Etapa 7
Multiplique ambos os lados de pelo fator de integração .
Toque para ver mais passagens...
Etapa 7.1
Multiplique por .
Etapa 7.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 7.2.1
Mova .
Etapa 7.2.2
Multiplique por .
Toque para ver mais passagens...
Etapa 7.2.2.1
Eleve à potência de .
Etapa 7.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 7.2.3
Some e .
Etapa 7.3
Multiplique por .
Etapa 7.4
Aplique a propriedade distributiva.
Etapa 7.5
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 7.5.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 7.5.2
Some e .
Etapa 8
A integral de é .
Etapa 9
Integre para encontrar .
Toque para ver mais passagens...
Etapa 9.1
Como é constante com relação a , mova para fora da integral.
Etapa 9.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 9.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 9.3.1
Reescreva como .
Etapa 9.3.2
Simplifique.
Toque para ver mais passagens...
Etapa 9.3.2.1
Combine e .
Etapa 9.3.2.2
Combine e .
Etapa 9.3.2.3
Mova para a esquerda de .
Etapa 9.3.2.4
Multiplique por .
Etapa 9.3.2.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.3.2.5.1
Cancele o fator comum.
Etapa 9.3.2.5.2
Divida por .
Etapa 10
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 11
Defina .
Etapa 12
Encontre .
Toque para ver mais passagens...
Etapa 12.1
Diferencie em relação a .
Etapa 12.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 12.3
Avalie .
Toque para ver mais passagens...
Etapa 12.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.3.3
Mova para a esquerda de .
Etapa 12.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 12.5
Reordene os termos.
Etapa 13
Resolva .
Toque para ver mais passagens...
Etapa 13.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 13.1.1
Subtraia dos dois lados da equação.
Etapa 13.1.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 13.1.2.1
Reorganize os fatores nos termos e .
Etapa 13.1.2.2
Subtraia de .
Etapa 13.1.2.3
Some e .
Etapa 14
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 14.1
Integre ambos os lados de .
Etapa 14.2
Avalie .
Etapa 14.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 15
Substitua por em .
Etapa 16
Combine e .