Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=(y^2)/y
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Multiplique os dois lados por .
Etapa 1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.2.1
Combine.
Etapa 1.2.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.2.2.1
Multiplique por .
Toque para ver mais passagens...
Etapa 1.2.2.1.1
Eleve à potência de .
Etapa 1.2.2.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.2.2.2
Some e .
Etapa 1.2.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.2.3.1
Multiplique por .
Toque para ver mais passagens...
Etapa 1.2.3.1.1
Eleve à potência de .
Etapa 1.2.3.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.2.3.2
Some e .
Etapa 1.2.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.4.1
Cancele o fator comum.
Etapa 1.2.4.2
Reescreva a expressão.
Etapa 1.3
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Eleve à potência de .
Etapa 2.2.1.2
Fatore de .
Etapa 2.2.1.3
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.2.1.3.1
Fatore de .
Etapa 2.2.1.3.2
Cancele o fator comum.
Etapa 2.2.1.3.3
Reescreva a expressão.
Etapa 2.2.2
A integral de com relação a é .
Etapa 2.3
Aplique a regra da constante.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.2
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.3
Resolva .
Toque para ver mais passagens...
Etapa 3.3.1
Reescreva a equação como .
Etapa 3.3.2
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 4
Agrupe os termos da constante.
Toque para ver mais passagens...
Etapa 4.1
Reescreva como .
Etapa 4.2
Reordene e .
Etapa 4.3
Combine constantes com o sinal de mais ou menos.