Cálculo Exemplos

Resolve a equação diferencial (2+yx^-2)dx+(y-x^-1)dy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.3
Diferencie.
Toque para ver mais passagens...
Etapa 1.3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Combine e .
Etapa 1.4.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.4
Multiplique por .
Etapa 1.5
Some e .
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.3.4
Multiplique por .
Etapa 2.4
Simplifique.
Toque para ver mais passagens...
Etapa 2.4.1
Some e .
Etapa 2.4.2
Reescreva a expressão usando a regra do expoente negativo .
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
Como os dois lados demonstraram ser equivalentes, a equação é uma identidade.
é uma identidade.
é uma identidade.
Etapa 4
A integral de é .
Etapa 5
Integre para encontrar .
Toque para ver mais passagens...
Etapa 5.1
Divida a integral única em várias integrais.
Etapa 5.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.3
Aplique a regra da constante.
Etapa 5.4
Simplifique.
Etapa 6
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 7
Defina .
Etapa 8
Encontre .
Toque para ver mais passagens...
Etapa 8.1
Diferencie em relação a .
Etapa 8.2
Diferencie.
Toque para ver mais passagens...
Etapa 8.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3
Avalie .
Toque para ver mais passagens...
Etapa 8.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.3
Multiplique por .
Etapa 8.3.4
Multiplique por .
Etapa 8.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 8.5
Simplifique.
Toque para ver mais passagens...
Etapa 8.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 8.5.2
Combine os termos.
Toque para ver mais passagens...
Etapa 8.5.2.1
Combine e .
Etapa 8.5.2.2
Some e .
Etapa 8.5.3
Reordene os termos.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Resolva .
Toque para ver mais passagens...
Etapa 9.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 9.1.1.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 9.1.1.2
Combine e .
Etapa 9.1.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 9.1.2.1
Subtraia dos dois lados da equação.
Etapa 9.1.2.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 9.1.2.2.1
Subtraia de .
Etapa 9.1.2.2.2
Some e .
Etapa 10
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 10.1
Integre ambos os lados de .
Etapa 10.2
Avalie .
Etapa 10.3
Aplique a regra da constante.
Etapa 11
Substitua por em .
Etapa 12
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 12.1
Combine e .
Etapa 12.2
Reescreva a expressão usando a regra do expoente negativo .
Etapa 12.3
Combine e .