Insira um problema...
Cálculo Exemplos
Etapa 1
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Aplique a regra da constante.
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Deixe . Depois, , então, . Reescreva usando e .
Etapa 2.3.1.1
Deixe . Encontre .
Etapa 2.3.1.1.1
Diferencie .
Etapa 2.3.1.1.2
Diferencie.
Etapa 2.3.1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.1.1.3
Avalie .
Etapa 2.3.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.1.1.3.3
Multiplique por .
Etapa 2.3.1.1.4
Diferencie usando a regra da constante.
Etapa 2.3.1.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.1.4.2
Some e .
Etapa 2.3.1.2
Reescreva o problema usando e .
Etapa 2.3.2
Simplifique.
Etapa 2.3.2.1
Multiplique por .
Etapa 2.3.2.2
Mova para a esquerda de .
Etapa 2.3.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.4
Aplique regras básicas de expoentes.
Etapa 2.3.4.1
Use para reescrever como .
Etapa 2.3.4.2
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.4.3
Multiplique os expoentes em .
Etapa 2.3.4.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.4.3.2
Combine e .
Etapa 2.3.4.3.3
Mova o número negativo para a frente da fração.
Etapa 2.3.5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.6
Simplifique.
Etapa 2.3.6.1
Reescreva como .
Etapa 2.3.6.2
Simplifique.
Etapa 2.3.6.2.1
Combine e .
Etapa 2.3.6.2.2
Cancele o fator comum de .
Etapa 2.3.6.2.2.1
Cancele o fator comum.
Etapa 2.3.6.2.2.2
Reescreva a expressão.
Etapa 2.3.6.2.3
Multiplique por .
Etapa 2.3.7
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .