Insira um problema...
Cálculo Exemplos
Etapa 1
Deixe . Substitua em todas as ocorrências de .
Etapa 2
Etapa 2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 2.1.3
Substitua todas as ocorrências de por .
Etapa 2.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3
Reescreva como .
Etapa 2.4
A derivada de em relação a é .
Etapa 3
Substitua por .
Etapa 4
Substitua a derivada na equação diferencial.
Etapa 5
Etapa 5.1
Resolva .
Etapa 5.1.1
Simplifique o lado esquerdo.
Etapa 5.1.1.1
Reordene os fatores em .
Etapa 5.1.2
Some aos dois lados da equação.
Etapa 5.1.3
Multiplique os dois lados por .
Etapa 5.1.4
Simplifique.
Etapa 5.1.4.1
Simplifique o lado esquerdo.
Etapa 5.1.4.1.1
Cancele o fator comum de .
Etapa 5.1.4.1.1.1
Cancele o fator comum.
Etapa 5.1.4.1.1.2
Reescreva a expressão.
Etapa 5.1.4.2
Simplifique o lado direito.
Etapa 5.1.4.2.1
Simplifique .
Etapa 5.1.4.2.1.1
Aplique a propriedade distributiva.
Etapa 5.1.4.2.1.2
Simplifique a expressão.
Etapa 5.1.4.2.1.2.1
Multiplique por .
Etapa 5.1.4.2.1.2.2
Multiplique por .
Etapa 5.1.5
Divida cada termo em por e simplifique.
Etapa 5.1.5.1
Divida cada termo em por .
Etapa 5.1.5.2
Simplifique o lado esquerdo.
Etapa 5.1.5.2.1
Cancele o fator comum de .
Etapa 5.1.5.2.1.1
Cancele o fator comum.
Etapa 5.1.5.2.1.2
Divida por .
Etapa 5.1.5.3
Simplifique o lado direito.
Etapa 5.1.5.3.1
Simplifique cada termo.
Etapa 5.1.5.3.1.1
Separe as frações.
Etapa 5.1.5.3.1.2
Reescreva em termos de senos e cossenos.
Etapa 5.1.5.3.1.3
Multiplique pelo inverso da fração para dividir por .
Etapa 5.1.5.3.1.4
Multiplique por .
Etapa 5.1.5.3.1.5
Divida por .
Etapa 5.1.5.3.1.6
Separe as frações.
Etapa 5.1.5.3.1.7
Reescreva em termos de senos e cossenos.
Etapa 5.1.5.3.1.8
Multiplique pelo inverso da fração para dividir por .
Etapa 5.1.5.3.1.9
Multiplique por .
Etapa 5.1.5.3.1.10
Divida por .
Etapa 5.2
Fatore de .
Etapa 5.2.1
Fatore de .
Etapa 5.2.2
Fatore de .
Etapa 5.2.3
Fatore de .
Etapa 5.3
Multiplique os dois lados por .
Etapa 5.4
Cancele o fator comum de .
Etapa 5.4.1
Fatore de .
Etapa 5.4.2
Cancele o fator comum.
Etapa 5.4.3
Reescreva a expressão.
Etapa 5.5
Reescreva a equação.
Etapa 6
Etapa 6.1
Determine uma integral de cada lado.
Etapa 6.2
Integre o lado esquerdo.
Etapa 6.2.1
Escreva a fração usando a decomposição da fração parcial.
Etapa 6.2.1.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 6.2.1.1.1
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 6.2.1.1.2
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 6.2.1.1.3
Cancele o fator comum de .
Etapa 6.2.1.1.3.1
Cancele o fator comum.
Etapa 6.2.1.1.3.2
Reescreva a expressão.
Etapa 6.2.1.1.4
Cancele o fator comum de .
Etapa 6.2.1.1.4.1
Cancele o fator comum.
Etapa 6.2.1.1.4.2
Reescreva a expressão.
Etapa 6.2.1.1.5
Simplifique cada termo.
Etapa 6.2.1.1.5.1
Cancele o fator comum de .
Etapa 6.2.1.1.5.1.1
Cancele o fator comum.
Etapa 6.2.1.1.5.1.2
Divida por .
Etapa 6.2.1.1.5.2
Aplique a propriedade distributiva.
Etapa 6.2.1.1.5.3
Multiplique por .
Etapa 6.2.1.1.5.4
Cancele o fator comum de .
Etapa 6.2.1.1.5.4.1
Cancele o fator comum.
Etapa 6.2.1.1.5.4.2
Divida por .
Etapa 6.2.1.1.6
Mova .
Etapa 6.2.1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 6.2.1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 6.2.1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 6.2.1.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 6.2.1.3
Resolva o sistema de equações.
Etapa 6.2.1.3.1
Reescreva a equação como .
Etapa 6.2.1.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 6.2.1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 6.2.1.3.2.2
Simplifique o lado direito.
Etapa 6.2.1.3.2.2.1
Remova os parênteses.
Etapa 6.2.1.3.3
Resolva em .
Etapa 6.2.1.3.3.1
Reescreva a equação como .
Etapa 6.2.1.3.3.2
Subtraia dos dois lados da equação.
Etapa 6.2.1.3.4
Resolva o sistema de equações.
Etapa 6.2.1.3.5
Liste todas as soluções.
Etapa 6.2.1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 6.2.1.5
Mova o número negativo para a frente da fração.
Etapa 6.2.2
Divida a integral única em várias integrais.
Etapa 6.2.3
A integral de com relação a é .
Etapa 6.2.4
Como é constante com relação a , mova para fora da integral.
Etapa 6.2.5
Deixe . Depois, . Reescreva usando e .
Etapa 6.2.5.1
Deixe . Encontre .
Etapa 6.2.5.1.1
Diferencie .
Etapa 6.2.5.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 6.2.5.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.2.5.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.2.5.1.5
Some e .
Etapa 6.2.5.2
Reescreva o problema usando e .
Etapa 6.2.6
A integral de com relação a é .
Etapa 6.2.7
Simplifique.
Etapa 6.3
A integral de com relação a é .
Etapa 6.4
Agrupe a constante de integração no lado direito como .
Etapa 7
Etapa 7.1
Use a propriedade dos logaritmos do quociente, .
Etapa 7.2
Reordene e .
Etapa 7.3
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 7.4
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 7.5
Resolva .
Etapa 7.5.1
Reescreva a equação como .
Etapa 7.5.2
Multiplique os dois lados por .
Etapa 7.5.3
Simplifique o lado esquerdo.
Etapa 7.5.3.1
Cancele o fator comum de .
Etapa 7.5.3.1.1
Cancele o fator comum.
Etapa 7.5.3.1.2
Reescreva a expressão.
Etapa 7.5.4
Resolva .
Etapa 7.5.4.1
Reordene os fatores em .
Etapa 7.5.4.2
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 8
Etapa 8.1
Reordene os termos.
Etapa 8.2
Reescreva como .
Etapa 8.3
Reordene e .
Etapa 8.4
Combine constantes com o sinal de mais ou menos.
Etapa 9
Substitua todas as ocorrências de por .
Etapa 10
Etapa 10.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 10.2
Expanda o lado esquerdo.
Etapa 10.2.1
Expanda movendo para fora do logaritmo.
Etapa 10.2.2
O logaritmo natural de é .
Etapa 10.2.3
Multiplique por .
Etapa 10.3
Expanda o lado direito.
Etapa 10.3.1
Reescreva como .
Etapa 10.3.2
Reescreva como .
Etapa 10.3.3
Expanda movendo para fora do logaritmo.
Etapa 10.3.4
O logaritmo natural de é .
Etapa 10.3.5
Multiplique por .
Etapa 10.4
Simplifique o lado direito.
Etapa 10.4.1
Use a propriedade dos logaritmos do produto, .
Etapa 10.5
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 10.5.1
Subtraia dos dois lados da equação.
Etapa 10.5.2
Combine os termos opostos em .
Etapa 10.5.2.1
Subtraia de .
Etapa 10.5.2.2
Some e .