Cálculo Exemplos

Resolve a equação diferencial (y^5-4x^3y^4-10xy+2y^2-21)dx+(5xy^4-4x^4y^3-5x^2+4xy+42)dy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Multiplique por .
Etapa 1.5
Avalie .
Toque para ver mais passagens...
Etapa 1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.5.3
Multiplique por .
Etapa 1.6
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.6.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.6.2
Some e .
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Avalie .
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.3
Multiplique por .
Etapa 2.5
Avalie .
Toque para ver mais passagens...
Etapa 2.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.5.3
Multiplique por .
Etapa 2.6
Avalie .
Toque para ver mais passagens...
Etapa 2.6.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.6.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.6.3
Multiplique por .
Etapa 2.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.8
Simplifique.
Toque para ver mais passagens...
Etapa 2.8.1
Some e .
Etapa 2.8.2
Reordene os termos.
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
Como os dois lados demonstraram ser equivalentes, a equação é uma identidade.
é uma identidade.
é uma identidade.
Etapa 4
A integral de é .
Etapa 5
Integre para encontrar .
Toque para ver mais passagens...
Etapa 5.1
Divida a integral única em várias integrais.
Etapa 5.2
Aplique a regra da constante.
Etapa 5.3
Como é constante com relação a , mova para fora da integral.
Etapa 5.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.5
Como é constante com relação a , mova para fora da integral.
Etapa 5.6
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.7
Aplique a regra da constante.
Etapa 5.8
Simplifique.
Toque para ver mais passagens...
Etapa 5.8.1
Combine e .
Etapa 5.8.2
Combine e .
Etapa 5.9
Aplique a regra da constante.
Etapa 5.10
Simplifique.
Etapa 6
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 7
Defina .
Etapa 8
Encontre .
Toque para ver mais passagens...
Etapa 8.1
Diferencie em relação a .
Etapa 8.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.3
Avalie .
Toque para ver mais passagens...
Etapa 8.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.3
Mova para a esquerda de .
Etapa 8.4
Avalie .
Toque para ver mais passagens...
Etapa 8.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.4.3
Multiplique por .
Etapa 8.5
Avalie .
Toque para ver mais passagens...
Etapa 8.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.5.3
Multiplique por .
Etapa 8.6
Avalie .
Toque para ver mais passagens...
Etapa 8.6.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.6.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.6.3
Multiplique por .
Etapa 8.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.8
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 8.9
Simplifique.
Toque para ver mais passagens...
Etapa 8.9.1
Some e .
Etapa 8.9.2
Reordene os termos.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 9.1.1
Some aos dois lados da equação.
Etapa 9.1.2
Subtraia dos dois lados da equação.
Etapa 9.1.3
Some aos dois lados da equação.
Etapa 9.1.4
Subtraia dos dois lados da equação.
Etapa 9.1.5
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 9.1.5.1
Some e .
Etapa 9.1.5.2
Some e .
Etapa 9.1.5.3
Reorganize os fatores nos termos e .
Etapa 9.1.5.4
Subtraia de .
Etapa 9.1.5.5
Some e .
Etapa 9.1.5.6
Some e .
Etapa 9.1.5.7
Some e .
Etapa 9.1.5.8
Subtraia de .
Etapa 9.1.5.9
Some e .
Etapa 10
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 10.1
Integre ambos os lados de .
Etapa 10.2
Avalie .
Etapa 10.3
Aplique a regra da constante.
Etapa 11
Substitua por em .