Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=(12x^2)/( raiz quadrada de 2+x^3)
Etapa 1
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Aplique a regra da constante.
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.2.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.2.1.1
Diferencie .
Etapa 2.3.2.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.2.1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2.1.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.2.1.5
Some e .
Etapa 2.3.2.2
Reescreva o problema usando e .
Etapa 2.3.3
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.3.1
Multiplique por .
Etapa 2.3.3.2
Mova para a esquerda de .
Etapa 2.3.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.3.5.1
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.5.1.1
Combine e .
Etapa 2.3.5.1.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.3.5.1.2.1
Fatore de .
Etapa 2.3.5.1.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.3.5.1.2.2.1
Fatore de .
Etapa 2.3.5.1.2.2.2
Cancele o fator comum.
Etapa 2.3.5.1.2.2.3
Reescreva a expressão.
Etapa 2.3.5.1.2.2.4
Divida por .
Etapa 2.3.5.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.3.5.2.1
Use para reescrever como .
Etapa 2.3.5.2.2
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.5.2.3
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.3.5.2.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.5.2.3.2
Combine e .
Etapa 2.3.5.2.3.3
Mova o número negativo para a frente da fração.
Etapa 2.3.6
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.7
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.7.1
Reescreva como .
Etapa 2.3.7.2
Multiplique por .
Etapa 2.3.8
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .