Cálculo Exemplos

Resolve a equação diferencial x^2-(y^3+2)(dy)/(dx)=0
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Resolva .
Toque para ver mais passagens...
Etapa 1.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.1.1
Aplique a propriedade distributiva.
Etapa 1.1.1.2
Multiplique por .
Etapa 1.1.1.3
Aplique a propriedade distributiva.
Etapa 1.1.2
Subtraia dos dois lados da equação.
Etapa 1.1.3
Fatore de .
Toque para ver mais passagens...
Etapa 1.1.3.1
Fatore de .
Etapa 1.1.3.2
Fatore de .
Etapa 1.1.3.3
Fatore de .
Etapa 1.1.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.1.4.1
Divida cada termo em por .
Etapa 1.1.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.1.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.4.2.1.1
Cancele o fator comum.
Etapa 1.1.4.2.1.2
Divida por .
Etapa 1.1.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.1.4.3.1
Mova o número negativo para a frente da fração.
Etapa 1.1.4.3.2
Fatore de .
Etapa 1.1.4.3.3
Reescreva como .
Etapa 1.1.4.3.4
Fatore de .
Etapa 1.1.4.3.5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.4.3.5.1
Reescreva como .
Etapa 1.1.4.3.5.2
Mova o número negativo para a frente da fração.
Etapa 1.1.4.3.5.3
Multiplique por .
Etapa 1.1.4.3.5.4
Multiplique por .
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.1
Cancele o fator comum.
Etapa 1.3.2
Reescreva a expressão.
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Divida a integral única em várias integrais.
Etapa 2.2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.3
Aplique a regra da constante.
Etapa 2.2.4
Simplifique.
Etapa 2.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.4
Agrupe a constante de integração no lado direito como .