Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)-xe^y=2e^y
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Some aos dois lados da equação.
Etapa 1.2
Fatore de .
Toque para ver mais passagens...
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Fatore de .
Etapa 1.2.3
Fatore de .
Etapa 1.3
Multiplique os dois lados por .
Etapa 1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.4.1
Cancele o fator comum.
Etapa 1.4.2
Reescreva a expressão.
Etapa 1.5
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.2.1.1
Negative o expoente de e o mova para fora do denominador.
Etapa 2.2.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.1.2.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.1.2.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.1.2.1.2
Mova para a esquerda de .
Etapa 2.2.1.2.1.3
Reescreva como .
Etapa 2.2.1.2.2
Multiplique por .
Etapa 2.2.2
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.2.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Diferencie .
Etapa 2.2.2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.2.1.4
Multiplique por .
Etapa 2.2.2.2
Reescreva o problema usando e .
Etapa 2.2.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.4
A integral de com relação a é .
Etapa 2.2.5
Simplifique.
Etapa 2.2.6
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Divida a integral única em várias integrais.
Etapa 2.3.2
Aplique a regra da constante.
Etapa 2.3.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.4
Simplifique.
Etapa 2.3.5
Reordene os termos.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.1.1
Divida cada termo em por .
Etapa 3.1.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.1.2.2
Divida por .
Etapa 3.1.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.1.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.3.1.1
Mova o número negativo do denominador de .
Etapa 3.1.3.1.2
Reescreva como .
Etapa 3.1.3.1.3
Combine e .
Etapa 3.1.3.1.4
Mova o número negativo do denominador de .
Etapa 3.1.3.1.5
Reescreva como .
Etapa 3.1.3.1.6
Multiplique por .
Etapa 3.1.3.1.7
Mova o número negativo do denominador de .
Etapa 3.1.3.1.8
Reescreva como .
Etapa 3.2
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 3.3
Expanda o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.3.1
Expanda movendo para fora do logaritmo.
Etapa 3.3.2
O logaritmo natural de é .
Etapa 3.3.3
Multiplique por .
Etapa 3.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.4.1
Divida cada termo em por .
Etapa 3.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.4.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.4.2.2
Divida por .
Etapa 3.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.4.3.1
Mova o número negativo do denominador de .
Etapa 3.4.3.2
Reescreva como .
Etapa 4
Simplifique a constante de integração.