Insira um problema...
Cálculo Exemplos
,
Etapa 1
Etapa 1.1
Multiplique os dois lados por .
Etapa 1.2
Cancele o fator comum de .
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Cancele o fator comum.
Etapa 1.2.3
Reescreva a expressão.
Etapa 1.3
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Divida a integral única em várias integrais.
Etapa 2.3.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.5
Aplique a regra da constante.
Etapa 2.3.6
Simplifique.
Etapa 2.3.6.1
Combine e .
Etapa 2.3.6.2
Simplifique.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Etapa 3.2.1
Simplifique o lado esquerdo.
Etapa 3.2.1.1
Simplifique .
Etapa 3.2.1.1.1
Combine e .
Etapa 3.2.1.1.2
Cancele o fator comum de .
Etapa 3.2.1.1.2.1
Cancele o fator comum.
Etapa 3.2.1.1.2.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Etapa 3.2.2.1
Simplifique .
Etapa 3.2.2.1.1
Simplifique cada termo.
Etapa 3.2.2.1.1.1
Aplique a propriedade distributiva.
Etapa 3.2.2.1.1.2
Combine e .
Etapa 3.2.2.1.1.3
Combine e .
Etapa 3.2.2.1.2
Aplique a propriedade distributiva.
Etapa 3.2.2.1.3
Simplifique.
Etapa 3.2.2.1.3.1
Cancele o fator comum de .
Etapa 3.2.2.1.3.1.1
Cancele o fator comum.
Etapa 3.2.2.1.3.1.2
Reescreva a expressão.
Etapa 3.2.2.1.3.2
Cancele o fator comum de .
Etapa 3.2.2.1.3.2.1
Cancele o fator comum.
Etapa 3.2.2.1.3.2.2
Reescreva a expressão.
Etapa 3.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Simplifique a constante de integração.
Etapa 5
Como é negativo na condição inicial , considere apenas para encontrar . Substitua por e por .
Etapa 6
Etapa 6.1
Reescreva a equação como .
Etapa 6.2
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 6.3
Simplifique cada lado da equação.
Etapa 6.3.1
Use para reescrever como .
Etapa 6.3.2
Simplifique o lado esquerdo.
Etapa 6.3.2.1
Simplifique .
Etapa 6.3.2.1.1
Eleve à potência de .
Etapa 6.3.2.1.2
Subtraia de .
Etapa 6.3.2.1.3
Aplique a regra do produto a .
Etapa 6.3.2.1.4
Eleve à potência de .
Etapa 6.3.2.1.5
Multiplique por .
Etapa 6.3.2.1.6
Multiplique os expoentes em .
Etapa 6.3.2.1.6.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.3.2.1.6.2
Cancele o fator comum de .
Etapa 6.3.2.1.6.2.1
Cancele o fator comum.
Etapa 6.3.2.1.6.2.2
Reescreva a expressão.
Etapa 6.3.2.1.7
Simplifique.
Etapa 6.3.3
Simplifique o lado direito.
Etapa 6.3.3.1
Eleve à potência de .
Etapa 6.4
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 6.4.1
Subtraia dos dois lados da equação.
Etapa 6.4.2
Subtraia de .
Etapa 7
Etapa 7.1
Substitua por .