Cálculo Exemplos

Resolve a equação diferencial y(3+2xy^2)dx+3(x^2y^2+x-1)dy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.3
Diferencie.
Toque para ver mais passagens...
Etapa 1.3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3
Some e .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.6
Multiplique por .
Etapa 1.4
Eleve à potência de .
Etapa 1.5
Eleve à potência de .
Etapa 1.6
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.7
Some e .
Etapa 1.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.9
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 1.9.1
Multiplique por .
Etapa 1.9.2
Some e .
Etapa 1.9.3
Reordene os termos.
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.6
Mova para a esquerda de .
Etapa 2.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.9
Some e .
Etapa 2.10
Simplifique.
Toque para ver mais passagens...
Etapa 2.10.1
Aplique a propriedade distributiva.
Etapa 2.10.2
Combine os termos.
Toque para ver mais passagens...
Etapa 2.10.2.1
Multiplique por .
Etapa 2.10.2.2
Multiplique por .
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
Como os dois lados demonstraram ser equivalentes, a equação é uma identidade.
é uma identidade.
é uma identidade.
Etapa 4
A integral de é .
Etapa 5
Integre para encontrar .
Toque para ver mais passagens...
Etapa 5.1
Como é constante com relação a , mova para fora da integral.
Etapa 5.2
Divida a integral única em várias integrais.
Etapa 5.3
Aplique a regra da constante.
Etapa 5.4
Como é constante com relação a , mova para fora da integral.
Etapa 5.5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.6
Simplifique.
Etapa 6
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 7
Defina .
Etapa 8
Encontre .
Toque para ver mais passagens...
Etapa 8.1
Diferencie em relação a .
Etapa 8.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.3
Avalie .
Toque para ver mais passagens...
Etapa 8.3.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 8.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.7
Mova para a esquerda de .
Etapa 8.3.8
Some e .
Etapa 8.3.9
Eleve à potência de .
Etapa 8.3.10
Eleve à potência de .
Etapa 8.3.11
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 8.3.12
Some e .
Etapa 8.3.13
Multiplique por .
Etapa 8.3.14
Some e .
Toque para ver mais passagens...
Etapa 8.3.14.1
Reordene e .
Etapa 8.3.14.2
Some e .
Etapa 8.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 8.5
Reordene os termos.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Resolva .
Toque para ver mais passagens...
Etapa 9.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 9.1.1.1
Reescreva.
Etapa 9.1.1.2
Simplifique somando os zeros.
Etapa 9.1.1.3
Aplique a propriedade distributiva.
Etapa 9.1.1.4
Multiplique por .
Etapa 9.1.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 9.1.2.1
Subtraia dos dois lados da equação.
Etapa 9.1.2.2
Subtraia dos dois lados da equação.
Etapa 9.1.2.3
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 9.1.2.3.1
Subtraia de .
Etapa 9.1.2.3.2
Some e .
Etapa 9.1.2.3.3
Subtraia de .
Etapa 9.1.2.3.4
Subtraia de .
Etapa 10
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 10.1
Integre ambos os lados de .
Etapa 10.2
Avalie .
Etapa 10.3
Aplique a regra da constante.
Etapa 11
Substitua por em .
Etapa 12
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 12.1
Aplique a propriedade distributiva.
Etapa 12.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 12.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 12.3.1
Mova .
Etapa 12.3.2
Multiplique por .
Toque para ver mais passagens...
Etapa 12.3.2.1
Eleve à potência de .
Etapa 12.3.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 12.3.3
Some e .