Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Multiplique os dois lados por .
Etapa 1.2
Simplifique.
Etapa 1.2.1
Cancele o fator comum de .
Etapa 1.2.1.1
Fatore de .
Etapa 1.2.1.2
Cancele o fator comum.
Etapa 1.2.1.3
Reescreva a expressão.
Etapa 1.2.2
Aplique a propriedade distributiva.
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Etapa 2.2.1
Aplique regras básicas de expoentes.
Etapa 2.2.1.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.2.1.2
Multiplique os expoentes em .
Etapa 2.2.1.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.1.2.2
Multiplique por .
Etapa 2.2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.3
Reescreva como .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Divida a integral única em várias integrais.
Etapa 2.3.2
Integre por partes usando a fórmula , em que e .
Etapa 2.3.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.4
Simplifique.
Etapa 2.3.4.1
Multiplique por .
Etapa 2.3.4.2
Multiplique por .
Etapa 2.3.5
Deixe . Depois, , então, . Reescreva usando e .
Etapa 2.3.5.1
Deixe . Encontre .
Etapa 2.3.5.1.1
Diferencie .
Etapa 2.3.5.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5.1.4
Multiplique por .
Etapa 2.3.5.2
Reescreva o problema usando e .
Etapa 2.3.6
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.7
A integral de com relação a é .
Etapa 2.3.8
Deixe . Depois, , então, . Reescreva usando e .
Etapa 2.3.8.1
Deixe . Encontre .
Etapa 2.3.8.1.1
Diferencie .
Etapa 2.3.8.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.8.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.8.1.4
Multiplique por .
Etapa 2.3.8.2
Reescreva o problema usando e .
Etapa 2.3.9
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.10
A integral de com relação a é .
Etapa 2.3.11
Simplifique.
Etapa 2.3.11.1
Simplifique.
Etapa 2.3.11.2
Subtraia de .
Etapa 2.3.12
Substitua todas as ocorrências de por .
Etapa 2.3.13
Reordene os termos.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Encontre o MMC dos termos na equação.
Etapa 3.1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 3.1.2
O MMC de um e qualquer expressão é a expressão.
Etapa 3.2
Multiplique cada termo em por para eliminar as frações.
Etapa 3.2.1
Multiplique cada termo em por .
Etapa 3.2.2
Simplifique o lado esquerdo.
Etapa 3.2.2.1
Cancele o fator comum de .
Etapa 3.2.2.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.2.2.1.2
Cancele o fator comum.
Etapa 3.2.2.1.3
Reescreva a expressão.
Etapa 3.2.3
Simplifique o lado direito.
Etapa 3.2.3.1
Reordene os fatores em .
Etapa 3.3
Resolva a equação.
Etapa 3.3.1
Reescreva a equação como .
Etapa 3.3.2
Fatore de .
Etapa 3.3.2.1
Fatore de .
Etapa 3.3.2.2
Fatore de .
Etapa 3.3.2.3
Fatore de .
Etapa 3.3.2.4
Fatore de .
Etapa 3.3.2.5
Fatore de .
Etapa 3.3.3
Divida cada termo em por e simplifique.
Etapa 3.3.3.1
Divida cada termo em por .
Etapa 3.3.3.2
Simplifique o lado esquerdo.
Etapa 3.3.3.2.1
Cancele o fator comum de .
Etapa 3.3.3.2.1.1
Cancele o fator comum.
Etapa 3.3.3.2.1.2
Divida por .
Etapa 3.3.3.3
Simplifique o lado direito.
Etapa 3.3.3.3.1
Mova o número negativo para a frente da fração.
Etapa 3.3.3.3.2
Fatore de .
Etapa 3.3.3.3.3
Fatore de .
Etapa 3.3.3.3.4
Fatore de .
Etapa 3.3.3.3.5
Fatore de .
Etapa 3.3.3.3.6
Fatore de .
Etapa 3.3.3.3.7
Simplifique a expressão.
Etapa 3.3.3.3.7.1
Reescreva como .
Etapa 3.3.3.3.7.2
Mova o número negativo para a frente da fração.
Etapa 3.3.3.3.7.3
Multiplique por .
Etapa 3.3.3.3.7.4
Multiplique por .
Etapa 4
Simplifique a constante de integração.