Cálculo Exemplos

Resolve a equação diferencial dx+e^(-5x)dy=0
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Multiplique os dois lados por .
Etapa 3
Simplifique.
Toque para ver mais passagens...
Etapa 3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.1.1
Cancele o fator comum.
Etapa 3.1.2
Reescreva a expressão.
Etapa 3.2
Combine e .
Etapa 3.3
Mova o número negativo para a frente da fração.
Etapa 4
Integre os dois lados.
Toque para ver mais passagens...
Etapa 4.1
Determine uma integral de cada lado.
Etapa 4.2
Aplique a regra da constante.
Etapa 4.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 4.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 4.3.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 4.3.2.1
Negative o expoente de e o mova para fora do denominador.
Etapa 4.3.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.3.2.2.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 4.3.2.2.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.3.2.2.1.2
Multiplique por .
Etapa 4.3.2.2.2
Multiplique por .
Etapa 4.3.3
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 4.3.3.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 4.3.3.1.1
Diferencie .
Etapa 4.3.3.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.3.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.3.1.4
Multiplique por .
Etapa 4.3.3.2
Reescreva o problema usando e .
Etapa 4.3.4
Combine e .
Etapa 4.3.5
Como é constante com relação a , mova para fora da integral.
Etapa 4.3.6
A integral de com relação a é .
Etapa 4.3.7
Simplifique.
Etapa 4.3.8
Substitua todas as ocorrências de por .
Etapa 4.4
Agrupe a constante de integração no lado direito como .