Cálculo Exemplos

Resolve a equação diferencial x(dy)/(dx)=y logaritmo natural de y/x
Etapa 1
Reescreva a equação diferencial como uma função de .
Toque para ver mais passagens...
Etapa 1.1
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.1.1
Divida cada termo em por .
Etapa 1.1.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.1.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.2.1.1
Cancele o fator comum.
Etapa 1.1.2.1.2
Divida por .
Etapa 1.2
Fatore a partir de .
Toque para ver mais passagens...
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Reordene e .
Etapa 2
Deixe . Substitua por .
Etapa 3
Resolva para .
Etapa 4
Use a regra do produto para encontrar a derivada de com relação a .
Etapa 5
Substitua por .
Etapa 6
Resolva a equação diferencial substituída.
Toque para ver mais passagens...
Etapa 6.1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 6.1.1
Resolva .
Toque para ver mais passagens...
Etapa 6.1.1.1
Reordene os fatores em .
Etapa 6.1.1.2
Subtraia dos dois lados da equação.
Etapa 6.1.1.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.1.1.3.1
Divida cada termo em por .
Etapa 6.1.1.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.1.1.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.1.1.3.2.1.1
Cancele o fator comum.
Etapa 6.1.1.3.2.1.2
Divida por .
Etapa 6.1.1.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.1.1.3.3.1
Mova o número negativo para a frente da fração.
Etapa 6.1.2
Fatore.
Toque para ver mais passagens...
Etapa 6.1.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 6.1.2.2
Fatore de .
Toque para ver mais passagens...
Etapa 6.1.2.2.1
Fatore de .
Etapa 6.1.2.2.2
Fatore de .
Etapa 6.1.2.2.3
Fatore de .
Etapa 6.1.3
Multiplique os dois lados por .
Etapa 6.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.1.4.1
Cancele o fator comum.
Etapa 6.1.4.2
Reescreva a expressão.
Etapa 6.1.5
Reescreva a equação.
Etapa 6.2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 6.2.1
Determine uma integral de cada lado.
Etapa 6.2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.2.2.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 6.2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 6.2.2.1.1.1
Diferencie .
Etapa 6.2.2.1.1.2
A derivada de em relação a é .
Etapa 6.2.2.1.2
Reescreva o problema usando e .
Etapa 6.2.2.2
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 6.2.2.2.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 6.2.2.2.1.1
Diferencie .
Etapa 6.2.2.2.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 6.2.2.2.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.2.2.2.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.2.2.2.1.5
Some e .
Etapa 6.2.2.2.2
Reescreva o problema usando e .
Etapa 6.2.2.3
A integral de com relação a é .
Etapa 6.2.2.4
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 6.2.2.4.1
Substitua todas as ocorrências de por .
Etapa 6.2.2.4.2
Substitua todas as ocorrências de por .
Etapa 6.2.3
A integral de com relação a é .
Etapa 6.2.4
Agrupe a constante de integração no lado direito como .
Etapa 6.3
Resolva .
Toque para ver mais passagens...
Etapa 6.3.1
Mova todos os termos que contêm um logaritmo para o lado esquerdo da equação.
Etapa 6.3.2
Use a propriedade dos logaritmos do quociente, .
Etapa 6.3.3
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 6.3.4
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 6.3.5
Resolva .
Toque para ver mais passagens...
Etapa 6.3.5.1
Reescreva a equação como .
Etapa 6.3.5.2
Multiplique os dois lados por .
Etapa 6.3.5.3
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.5.3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.5.3.1.1
Cancele o fator comum.
Etapa 6.3.5.3.1.2
Reescreva a expressão.
Etapa 6.3.5.4
Resolva .
Toque para ver mais passagens...
Etapa 6.3.5.4.1
Reordene os fatores em .
Etapa 6.3.5.4.2
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 6.3.5.4.3
Some aos dois lados da equação.
Etapa 6.3.5.4.4
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 6.3.5.4.5
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 6.3.5.4.6
Resolva .
Toque para ver mais passagens...
Etapa 6.3.5.4.6.1
Reescreva a equação como .
Etapa 6.3.5.4.6.2
Reordene os fatores em .
Etapa 6.4
Agrupe os termos da constante.
Toque para ver mais passagens...
Etapa 6.4.1
Simplifique a constante de integração.
Etapa 6.4.2
Combine constantes com o sinal de mais ou menos.
Etapa 7
Substitua por .
Etapa 8
Resolva para .
Toque para ver mais passagens...
Etapa 8.1
Multiplique os dois lados por .
Etapa 8.2
Simplifique.
Toque para ver mais passagens...
Etapa 8.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 8.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 8.2.1.1.1
Cancele o fator comum.
Etapa 8.2.1.1.2
Reescreva a expressão.
Etapa 8.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 8.2.2.1
Reordene os fatores em .