Cálculo Exemplos

Resolve a equação diferencial (x^2+1)dx+1/ydy=0
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
A integral de com relação a é .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Multiplique .
Etapa 2.3.2
Multiplique por .
Etapa 2.3.3
Divida a integral única em várias integrais.
Etapa 2.3.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.6
Aplique a regra da constante.
Etapa 2.3.7
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.7.1
Combine e .
Etapa 2.3.7.2
Simplifique.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.2
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.3
Resolva .
Toque para ver mais passagens...
Etapa 3.3.1
Reescreva a equação como .
Etapa 3.3.2
Combine e .
Etapa 3.3.3
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 4
Agrupe os termos da constante.
Toque para ver mais passagens...
Etapa 4.1
Reescreva como .
Etapa 4.2
Reordene e .
Etapa 4.3
Combine constantes com o sinal de mais ou menos.