Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=(y(y-2))/(x(y-1))
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Reagrupe os fatores.
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Multiplique por .
Etapa 1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.2.1
Fatore de .
Etapa 1.3.2.2
Cancele o fator comum.
Etapa 1.3.2.3
Reescreva a expressão.
Etapa 1.3.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.3.1
Cancele o fator comum.
Etapa 1.3.3.2
Reescreva a expressão.
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.2.1.1.3
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1.1.3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.3.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.2.1.1.3.4.1
Some e .
Etapa 2.2.1.1.3.4.2
Multiplique por .
Etapa 2.2.1.1.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.3.6
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 2.2.1.1.3.6.1
Multiplique por .
Etapa 2.2.1.1.3.6.2
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.2.1
Multiplique por .
Etapa 2.2.2.2
Mova para a esquerda de .
Etapa 2.2.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.4
A integral de com relação a é .
Etapa 2.2.5
Simplifique.
Etapa 2.2.6
Substitua todas as ocorrências de por .
Etapa 2.3
A integral de com relação a é .
Etapa 2.4
Agrupe a constante de integração no lado direito como .