Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=5/((x+2)^2e^(y-1))
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Reagrupe os fatores.
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Combine.
Etapa 1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.2.1
Fatore de .
Etapa 1.3.2.2
Cancele o fator comum.
Etapa 1.3.2.3
Reescreva a expressão.
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
A integral de com relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.2.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.2.1.1
Diferencie .
Etapa 2.3.2.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.2.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.2.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2.1.5
Some e .
Etapa 2.3.2.2
Reescreva o problema usando e .
Etapa 2.3.3
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.3.3.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.3.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.3.3.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.3.2.2
Multiplique por .
Etapa 2.3.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.5
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.5.1
Reescreva como .
Etapa 2.3.5.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.5.2.1
Multiplique por .
Etapa 2.3.5.2.2
Combine e .
Etapa 2.3.5.2.3
Mova o número negativo para a frente da fração.
Etapa 2.3.6
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 3.2
Expanda o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1
Expanda movendo para fora do logaritmo.
Etapa 3.2.2
O logaritmo natural de é .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.3.1.1
Divida a fração em duas frações.
Etapa 3.3.1.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.1.2.1
Divida a fração em duas frações.
Etapa 3.3.1.2.2
Mova o número negativo para a frente da fração.
Etapa 3.4
Some aos dois lados da equação.
Etapa 4
Simplifique a constante de integração.