Insira um problema...
Cálculo Exemplos
e
Etapa 1
Etapa 1.1
Fatore de .
Etapa 1.1.1
Fatore de .
Etapa 1.1.2
Fatore de .
Etapa 1.1.3
Fatore de .
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Cancele o fator comum de .
Etapa 1.3.1
Cancele o fator comum.
Etapa 1.3.2
Reescreva a expressão.
Etapa 1.4
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Etapa 2.2.1
Simplifique a expressão.
Etapa 2.2.1.1
Negative o expoente de e o mova para fora do denominador.
Etapa 2.2.1.2
Simplifique.
Etapa 2.2.1.2.1
Multiplique os expoentes em .
Etapa 2.2.1.2.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.1.2.1.2
Multiplique por .
Etapa 2.2.1.2.2
Multiplique por .
Etapa 2.2.2
Deixe . Depois, , então, . Reescreva usando e .
Etapa 2.2.2.1
Deixe . Encontre .
Etapa 2.2.2.1.1
Diferencie .
Etapa 2.2.2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.2.1.4
Multiplique por .
Etapa 2.2.2.2
Reescreva o problema usando e .
Etapa 2.2.3
Combine e .
Etapa 2.2.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.5
A integral de com relação a é .
Etapa 2.2.6
Simplifique.
Etapa 2.2.7
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Divida a integral única em várias integrais.
Etapa 2.3.2
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.4
Aplique a regra da constante.
Etapa 2.3.5
Simplifique.
Etapa 2.3.5.1
Combine e .
Etapa 2.3.5.2
Simplifique.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Etapa 3.2.1
Simplifique o lado esquerdo.
Etapa 3.2.1.1
Simplifique .
Etapa 3.2.1.1.1
Combine e .
Etapa 3.2.1.1.2
Cancele o fator comum de .
Etapa 3.2.1.1.2.1
Cancele o fator comum.
Etapa 3.2.1.1.2.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Etapa 3.2.2.1
Simplifique .
Etapa 3.2.2.1.1
Aplique a propriedade distributiva.
Etapa 3.2.2.1.2
Multiplique por .
Etapa 3.3
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 3.4
Expanda o lado esquerdo.
Etapa 3.4.1
Expanda movendo para fora do logaritmo.
Etapa 3.4.2
O logaritmo natural de é .
Etapa 3.4.3
Multiplique por .
Etapa 3.5
Divida cada termo em por e simplifique.
Etapa 3.5.1
Divida cada termo em por .
Etapa 3.5.2
Simplifique o lado esquerdo.
Etapa 3.5.2.1
Cancele o fator comum de .
Etapa 3.5.2.1.1
Cancele o fator comum.
Etapa 3.5.2.1.2
Divida por .
Etapa 4
Simplifique a constante de integração.
Etapa 5
Use a condição inicial para encontrar o valor de , substituindo por e por em .
Etapa 6
Etapa 6.1
Reescreva a equação como .
Etapa 6.2
Multiplique os dois lados da equação por .
Etapa 6.3
Simplifique os dois lados da equação.
Etapa 6.3.1
Simplifique o lado esquerdo.
Etapa 6.3.1.1
Simplifique .
Etapa 6.3.1.1.1
Cancele o fator comum de .
Etapa 6.3.1.1.1.1
Cancele o fator comum.
Etapa 6.3.1.1.1.2
Reescreva a expressão.
Etapa 6.3.1.1.2
Simplifique cada termo.
Etapa 6.3.1.1.2.1
Elevar a qualquer potência positiva produz .
Etapa 6.3.1.1.2.2
Multiplique por .
Etapa 6.3.1.1.2.3
Multiplique por .
Etapa 6.3.1.1.3
Combine os termos opostos em .
Etapa 6.3.1.1.3.1
Some e .
Etapa 6.3.1.1.3.2
Some e .
Etapa 6.3.2
Simplifique o lado direito.
Etapa 6.3.2.1
Multiplique por .
Etapa 6.4
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 6.5
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 6.6
Reescreva a equação como .
Etapa 7
Etapa 7.1
Substitua por .
Etapa 7.2
Reescreva como .
Etapa 7.3
Simplifique movendo para dentro do logaritmo.