Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Divida cada termo em por e simplifique.
Etapa 1.1.1
Divida cada termo em por .
Etapa 1.1.2
Simplifique o lado esquerdo.
Etapa 1.1.2.1
Cancele o fator comum de .
Etapa 1.1.2.1.1
Cancele o fator comum.
Etapa 1.1.2.1.2
Divida por .
Etapa 1.1.3
Simplifique o lado direito.
Etapa 1.1.3.1
Multiplique o numerador pelo inverso do denominador.
Etapa 1.1.3.2
Combine.
Etapa 1.1.3.3
Multiplique por .
Etapa 1.2
Reagrupe os fatores.
Etapa 1.3
Multiplique os dois lados por .
Etapa 1.4
Simplifique.
Etapa 1.4.1
Combine.
Etapa 1.4.2
Combine.
Etapa 1.4.3
Cancele o fator comum de .
Etapa 1.4.3.1
Cancele o fator comum.
Etapa 1.4.3.2
Reescreva a expressão.
Etapa 1.4.4
Cancele o fator comum de .
Etapa 1.4.4.1
Cancele o fator comum.
Etapa 1.4.4.2
Reescreva a expressão.
Etapa 1.5
Reescreva a equação.
Etapa 2
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Etapa 2.2.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.3
Simplifique a resposta.
Etapa 2.2.3.1
Reescreva como .
Etapa 2.2.3.2
Simplifique.
Etapa 2.2.3.2.1
Multiplique por .
Etapa 2.2.3.2.2
Multiplique por .
Etapa 2.3
Integre o lado direito.
Etapa 2.3.1
Aplique regras básicas de expoentes.
Etapa 2.3.1.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.1.2
Multiplique os expoentes em .
Etapa 2.3.1.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.1.2.2
Multiplique por .
Etapa 2.3.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.3
Simplifique a resposta.
Etapa 2.3.3.1
Reescreva como .
Etapa 2.3.3.2
Simplifique.
Etapa 2.3.3.2.1
Multiplique por .
Etapa 2.3.3.2.2
Mova para a esquerda de .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Etapa 3.2.1
Simplifique o lado esquerdo.
Etapa 3.2.1.1
Simplifique .
Etapa 3.2.1.1.1
Combine e .
Etapa 3.2.1.1.2
Cancele o fator comum de .
Etapa 3.2.1.1.2.1
Cancele o fator comum.
Etapa 3.2.1.1.2.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Etapa 3.2.2.1
Simplifique .
Etapa 3.2.2.1.1
Aplique a propriedade distributiva.
Etapa 3.2.2.1.2
Cancele o fator comum de .
Etapa 3.2.2.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.2.2.1.2.2
Fatore de .
Etapa 3.2.2.1.2.3
Fatore de .
Etapa 3.2.2.1.2.4
Cancele o fator comum.
Etapa 3.2.2.1.2.5
Reescreva a expressão.
Etapa 3.2.2.1.3
Combine e .
Etapa 3.2.2.1.4
Simplifique a expressão.
Etapa 3.2.2.1.4.1
Multiplique por .
Etapa 3.2.2.1.4.2
Mova o número negativo para a frente da fração.
Etapa 3.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.4
Simplifique .
Etapa 3.4.1
Fatore de .
Etapa 3.4.1.1
Fatore de .
Etapa 3.4.1.2
Fatore de .
Etapa 3.4.1.3
Fatore de .
Etapa 3.4.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.4.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.4.4
Combine e .
Etapa 3.4.5
Reescreva como .
Etapa 3.4.5.1
Fatore a potência perfeita de .
Etapa 3.4.5.2
Fatore a potência perfeita de .
Etapa 3.4.5.3
Reorganize a fração .
Etapa 3.4.6
Elimine os termos abaixo do radical.
Etapa 3.4.7
Combine e .
Etapa 3.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Simplifique a constante de integração.