Cálculo Exemplos

Resolve a equação diferencial (2xy+y^2)dx+(x^2+2xy-y)dy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Some e .
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
Como os dois lados demonstraram ser equivalentes, a equação é uma identidade.
é uma identidade.
é uma identidade.
Etapa 4
A integral de é .
Etapa 5
Integre para encontrar .
Toque para ver mais passagens...
Etapa 5.1
Divida a integral única em várias integrais.
Etapa 5.2
Como é constante com relação a , mova para fora da integral.
Etapa 5.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.4
Aplique a regra da constante.
Etapa 5.5
Combine e .
Etapa 5.6
Simplifique.
Etapa 6
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 7
Defina .
Etapa 8
Encontre .
Toque para ver mais passagens...
Etapa 8.1
Diferencie em relação a .
Etapa 8.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.3
Avalie .
Toque para ver mais passagens...
Etapa 8.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.3
Multiplique por .
Etapa 8.4
Avalie .
Toque para ver mais passagens...
Etapa 8.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.4.3
Mova para a esquerda de .
Etapa 8.5
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 8.6
Reordene os termos.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 9.1.1
Subtraia dos dois lados da equação.
Etapa 9.1.2
Subtraia dos dois lados da equação.
Etapa 9.1.3
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 9.1.3.1
Subtraia de .
Etapa 9.1.3.2
Some e .
Etapa 9.1.3.3
Subtraia de .
Etapa 9.1.3.4
Some e .
Etapa 10
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 10.1
Integre ambos os lados de .
Etapa 10.2
Avalie .
Etapa 10.3
Como é constante com relação a , mova para fora da integral.
Etapa 10.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 10.5
Reescreva como .
Etapa 11
Substitua por em .
Etapa 12
Simplifique .
Toque para ver mais passagens...
Etapa 12.1
Combine e .
Etapa 12.2
Subtraia de .
Toque para ver mais passagens...
Etapa 12.2.1
Reordene e .
Etapa 12.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 12.2.3
Combine e .
Etapa 12.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 12.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 12.3.1
Fatore de .
Toque para ver mais passagens...
Etapa 12.3.1.1
Fatore de .
Etapa 12.3.1.2
Fatore de .
Etapa 12.3.1.3
Fatore de .
Etapa 12.3.2
Mova para a esquerda de .
Etapa 12.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 12.5
Combine e .
Etapa 12.6
Combine os numeradores em relação ao denominador comum.
Etapa 12.7
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 12.7.1
Fatore de .
Toque para ver mais passagens...
Etapa 12.7.1.1
Fatore de .
Etapa 12.7.1.2
Fatore de .
Etapa 12.7.1.3
Fatore de .
Etapa 12.7.2
Mova para a esquerda de .
Etapa 12.7.3
Aplique a propriedade distributiva.
Etapa 12.7.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 12.7.5
Mova para a esquerda de .
Etapa 12.7.6
Simplifique cada termo.