Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=x(y-1)^2
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Multiplique os dois lados por .
Etapa 1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Cancele o fator comum.
Etapa 1.2.3
Reescreva a expressão.
Etapa 1.3
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.2.2.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.2.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.2.2.2
Multiplique por .
Etapa 2.2.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.4
Reescreva como .
Etapa 2.2.5
Substitua todas as ocorrências de por .
Etapa 2.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Combine e .
Etapa 3.2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 3.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 3.2.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 3.2.3
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 3.2.4
Como não tem fatores além de e .
é um número primo
Etapa 3.2.5
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 3.2.6
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 3.2.7
O fator de é o próprio .
ocorre vez.
Etapa 3.2.8
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3.2.9
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 3.3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 3.3.1
Multiplique cada termo em por .
Etapa 3.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.2.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.3.2.1.2
Fatore de .
Etapa 3.3.2.1.3
Cancele o fator comum.
Etapa 3.3.2.1.4
Reescreva a expressão.
Etapa 3.3.2.2
Multiplique por .
Etapa 3.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.3.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.3.1.2.1
Cancele o fator comum.
Etapa 3.3.3.1.2.2
Reescreva a expressão.
Etapa 3.3.3.1.3
Aplique a propriedade distributiva.
Etapa 3.3.3.1.4
Mova para a esquerda de .
Etapa 3.3.3.1.5
Reescreva como .
Etapa 3.3.3.1.6
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.3.1.7
Aplique a propriedade distributiva.
Etapa 3.3.3.1.8
Multiplique por .
Etapa 3.4
Resolva a equação.
Toque para ver mais passagens...
Etapa 3.4.1
Reescreva a equação como .
Etapa 3.4.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 3.4.2.1
Some aos dois lados da equação.
Etapa 3.4.2.2
Some aos dois lados da equação.
Etapa 3.4.3
Fatore de .
Toque para ver mais passagens...
Etapa 3.4.3.1
Fatore de .
Etapa 3.4.3.2
Fatore de .
Etapa 3.4.3.3
Fatore de .
Etapa 3.4.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.4.4.1
Divida cada termo em por .
Etapa 3.4.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.4.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.4.4.2.1.1
Cancele o fator comum.
Etapa 3.4.4.2.1.2
Divida por .
Etapa 3.4.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.4.4.3.1
Mova o número negativo para a frente da fração.
Etapa 3.4.4.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.4.4.3.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.4.4.3.4
Reescreva como .
Etapa 3.4.4.3.5
Fatore de .
Etapa 3.4.4.3.6
Fatore de .
Etapa 3.4.4.3.7
Fatore de .
Etapa 3.4.4.3.8
Fatore de .
Etapa 3.4.4.3.9
Mova o número negativo para a frente da fração.
Etapa 4
Simplifique a constante de integração.