Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=3/(x^2+x)
Etapa 1
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Aplique a regra da constante.
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 2.3.2.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 2.3.2.1.1
Fatore de .
Toque para ver mais passagens...
Etapa 2.3.2.1.1.1
Fatore de .
Etapa 2.3.2.1.1.2
Eleve à potência de .
Etapa 2.3.2.1.1.3
Fatore de .
Etapa 2.3.2.1.1.4
Fatore de .
Etapa 2.3.2.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 2.3.2.1.3
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 2.3.2.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.1.4.1
Cancele o fator comum.
Etapa 2.3.2.1.4.2
Reescreva a expressão.
Etapa 2.3.2.1.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.1.5.1
Cancele o fator comum.
Etapa 2.3.2.1.5.2
Reescreva a expressão.
Etapa 2.3.2.1.6
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.3.2.1.6.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.1.6.1.1
Cancele o fator comum.
Etapa 2.3.2.1.6.1.2
Divida por .
Etapa 2.3.2.1.6.2
Aplique a propriedade distributiva.
Etapa 2.3.2.1.6.3
Multiplique por .
Etapa 2.3.2.1.6.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.1.6.4.1
Cancele o fator comum.
Etapa 2.3.2.1.6.4.2
Divida por .
Etapa 2.3.2.1.7
Mova .
Etapa 2.3.2.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 2.3.2.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 2.3.2.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 2.3.2.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 2.3.2.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 2.3.2.3.1
Reescreva a equação como .
Etapa 2.3.2.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 2.3.2.3.2.1
Substitua todas as ocorrências de em por .
Etapa 2.3.2.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.2.3.2.2.1
Remova os parênteses.
Etapa 2.3.2.3.3
Resolva em .
Toque para ver mais passagens...
Etapa 2.3.2.3.3.1
Reescreva a equação como .
Etapa 2.3.2.3.3.2
Subtraia dos dois lados da equação.
Etapa 2.3.2.3.4
Resolva o sistema de equações.
Etapa 2.3.2.3.5
Liste todas as soluções.
Etapa 2.3.2.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 2.3.2.5
Mova o número negativo para a frente da fração.
Etapa 2.3.3
Divida a integral única em várias integrais.
Etapa 2.3.4
A integral de com relação a é .
Etapa 2.3.5
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.6
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.6.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.6.1.1
Diferencie .
Etapa 2.3.6.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.6.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.6.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.6.1.5
Some e .
Etapa 2.3.6.2
Reescreva o problema usando e .
Etapa 2.3.7
A integral de com relação a é .
Etapa 2.3.8
Simplifique.
Etapa 2.3.9
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .