Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Divida cada termo em por .
Etapa 1.2
Cancele o fator comum de .
Etapa 1.2.1
Cancele o fator comum.
Etapa 1.2.2
Divida por .
Etapa 1.3
Cancele o fator comum de e .
Etapa 1.3.1
Fatore de .
Etapa 1.3.2
Cancele os fatores comuns.
Etapa 1.3.2.1
Multiplique por .
Etapa 1.3.2.2
Cancele o fator comum.
Etapa 1.3.2.3
Reescreva a expressão.
Etapa 1.3.2.4
Divida por .
Etapa 1.4
Fatore de .
Etapa 1.5
Reordene e .
Etapa 2
Etapa 2.1
Determine a integração.
Etapa 2.2
Integre .
Etapa 2.2.1
Mova o número negativo para a frente da fração.
Etapa 2.2.2
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.4
Multiplique por .
Etapa 2.2.5
Deixe . Depois, . Reescreva usando e .
Etapa 2.2.5.1
Deixe . Encontre .
Etapa 2.2.5.1.1
Diferencie .
Etapa 2.2.5.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.5.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.5.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.5.1.5
Some e .
Etapa 2.2.5.2
Reescreva o problema usando e .
Etapa 2.2.6
A integral de com relação a é .
Etapa 2.2.7
Simplifique.
Etapa 2.2.8
Substitua todas as ocorrências de por .
Etapa 2.3
Remova a constante de integração.
Etapa 2.4
Use a regra da multiplicação de potências logarítmica.
Etapa 2.5
Potenciação e logaritmo são funções inversas.
Etapa 2.6
Reescreva a expressão usando a regra do expoente negativo .
Etapa 3
Etapa 3.1
Multiplique cada termo por .
Etapa 3.2
Simplifique cada termo.
Etapa 3.2.1
Combine e .
Etapa 3.2.2
Mova o número negativo para a frente da fração.
Etapa 3.2.3
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.4
Combine e .
Etapa 3.2.5
Multiplique .
Etapa 3.2.5.1
Multiplique por .
Etapa 3.2.5.2
Multiplique por somando os expoentes.
Etapa 3.2.5.2.1
Multiplique por .
Etapa 3.2.5.2.1.1
Eleve à potência de .
Etapa 3.2.5.2.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.5.2.2
Some e .
Etapa 3.3
Cancele o fator comum de .
Etapa 3.3.1
Fatore de .
Etapa 3.3.2
Cancele o fator comum.
Etapa 3.3.3
Reescreva a expressão.
Etapa 4
Reescreva o lado esquerdo como resultado da diferenciação de um produto.
Etapa 5
Determine uma integral de cada lado.
Etapa 6
Integre o lado esquerdo.
Etapa 7
Etapa 7.1
Divida a integral única em várias integrais.
Etapa 7.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 7.3
Aplique a regra da constante.
Etapa 7.4
Simplifique.
Etapa 8
Etapa 8.1
Combine e .
Etapa 8.2
Combine e .
Etapa 8.3
Multiplique os dois lados por .
Etapa 8.4
Simplifique.
Etapa 8.4.1
Simplifique o lado esquerdo.
Etapa 8.4.1.1
Cancele o fator comum de .
Etapa 8.4.1.1.1
Cancele o fator comum.
Etapa 8.4.1.1.2
Reescreva a expressão.
Etapa 8.4.2
Simplifique o lado direito.
Etapa 8.4.2.1
Simplifique .
Etapa 8.4.2.1.1
Aplique a propriedade distributiva.
Etapa 8.4.2.1.2
Combine e .
Etapa 8.4.2.1.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 8.4.2.1.4
Combine e .
Etapa 8.4.2.1.5
Combine os numeradores em relação ao denominador comum.
Etapa 8.4.2.1.6
Fatore de .
Etapa 8.4.2.1.6.1
Fatore de .
Etapa 8.4.2.1.6.2
Fatore de .
Etapa 8.4.2.1.6.3
Fatore de .
Etapa 8.4.2.1.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 8.4.2.1.8
Simplifique os termos.
Etapa 8.4.2.1.8.1
Combine e .
Etapa 8.4.2.1.8.2
Combine os numeradores em relação ao denominador comum.
Etapa 8.4.2.1.9
Simplifique o numerador.
Etapa 8.4.2.1.9.1
Fatore de .
Etapa 8.4.2.1.9.1.1
Fatore de .
Etapa 8.4.2.1.9.1.2
Fatore de .
Etapa 8.4.2.1.9.1.3
Fatore de .
Etapa 8.4.2.1.9.2
Aplique a propriedade distributiva.
Etapa 8.4.2.1.9.3
Multiplique por .
Etapa 8.4.2.1.9.4
Mova para a esquerda de .
Etapa 8.4.2.1.9.5
Mova para a esquerda de .