Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)+xy=x/y
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Subtraia dos dois lados da equação.
Etapa 1.2
Fatore.
Toque para ver mais passagens...
Etapa 1.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 1.2.1.1
Fatore de .
Etapa 1.2.1.2
Fatore de .
Etapa 1.2.1.3
Fatore de .
Etapa 1.2.2
Reescreva como .
Etapa 1.2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.4
Combine e .
Etapa 1.2.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.2.6.1
Reescreva como .
Etapa 1.2.6.2
Reescreva como .
Etapa 1.2.6.3
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 1.3
Multiplique os dois lados por .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Combine e .
Etapa 1.4.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.4.2.1
Cancele o fator comum.
Etapa 1.4.2.2
Reescreva a expressão.
Etapa 1.4.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.4.3.1
Fatore de .
Etapa 1.4.3.2
Cancele o fator comum.
Etapa 1.4.3.3
Reescreva a expressão.
Etapa 1.5
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.2.1.1.3
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1.1.3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.3.3
Some e .
Etapa 2.2.1.1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.3.6
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.2.1.1.3.6.1
Multiplique por .
Etapa 2.2.1.1.3.6.2
Mova para a esquerda de .
Etapa 2.2.1.1.3.6.3
Reescreva como .
Etapa 2.2.1.1.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.3.9
Some e .
Etapa 2.2.1.1.3.10
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.3.11
Multiplique por .
Etapa 2.2.1.1.4
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.1.1.4.1
Aplique a propriedade distributiva.
Etapa 2.2.1.1.4.2
Combine os termos.
Toque para ver mais passagens...
Etapa 2.2.1.1.4.2.1
Multiplique por .
Etapa 2.2.1.1.4.2.2
Some e .
Etapa 2.2.1.1.4.2.3
Some e .
Etapa 2.2.1.1.4.2.4
Subtraia de .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.2.1
Mova o número negativo para a frente da fração.
Etapa 2.2.2.2
Multiplique por .
Etapa 2.2.2.3
Mova para a esquerda de .
Etapa 2.2.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.5
A integral de com relação a é .
Etapa 2.2.6
Simplifique.
Etapa 2.2.7
Substitua todas as ocorrências de por .
Etapa 2.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 3.2.1.1.1.1
Aplique a propriedade distributiva.
Etapa 3.2.1.1.1.2
Aplique a propriedade distributiva.
Etapa 3.2.1.1.1.3
Aplique a propriedade distributiva.
Etapa 3.2.1.1.2
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 3.2.1.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.1.1.2.1.1
Multiplique por .
Etapa 3.2.1.1.2.1.2
Multiplique por .
Etapa 3.2.1.1.2.1.3
Multiplique por .
Etapa 3.2.1.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.1.2.1.5
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.2.1.1.2.1.5.1
Mova .
Etapa 3.2.1.1.2.1.5.2
Multiplique por .
Etapa 3.2.1.1.2.2
Some e .
Etapa 3.2.1.1.2.3
Some e .
Etapa 3.2.1.1.3
Combine e .
Etapa 3.2.1.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.1.4.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.2.1.1.4.2
Fatore de .
Etapa 3.2.1.1.4.3
Cancele o fator comum.
Etapa 3.2.1.1.4.4
Reescreva a expressão.
Etapa 3.2.1.1.5
Multiplique.
Toque para ver mais passagens...
Etapa 3.2.1.1.5.1
Multiplique por .
Etapa 3.2.1.1.5.2
Multiplique por .
Etapa 3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Combine e .
Etapa 3.2.2.1.2
Aplique a propriedade distributiva.
Etapa 3.2.2.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.1.3.1
Fatore de .
Etapa 3.2.2.1.3.2
Cancele o fator comum.
Etapa 3.2.2.1.3.3
Reescreva a expressão.
Etapa 3.3
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.4
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.5
Resolva .
Toque para ver mais passagens...
Etapa 3.5.1
Reescreva a equação como .
Etapa 3.5.2
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 3.5.3
Subtraia dos dois lados da equação.
Etapa 3.5.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.5.4.1
Divida cada termo em por .
Etapa 3.5.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.5.4.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.5.4.2.2
Divida por .
Etapa 3.5.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.5.4.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.5.4.3.1.1
Mova o número negativo do denominador de .
Etapa 3.5.4.3.1.2
Reescreva como .
Etapa 3.5.4.3.1.3
Divida por .
Etapa 3.5.5
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 4
Agrupe os termos da constante.
Toque para ver mais passagens...
Etapa 4.1
Simplifique a constante de integração.
Etapa 4.2
Reescreva como .
Etapa 4.3
Reordene e .
Etapa 4.4
Combine constantes com o sinal de mais ou menos.