Cálculo Exemplos

Resolve a equação diferencial x^2(dy)/(dx)=3y
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.1.1
Divida cada termo em por .
Etapa 1.1.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.1.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.2.1.1
Cancele o fator comum.
Etapa 1.1.2.1.2
Divida por .
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Combine.
Etapa 1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.2.1
Cancele o fator comum.
Etapa 1.3.2.2
Reescreva a expressão.
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
A integral de com relação a é .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.3.2.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.3.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.3.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.2.2.2
Multiplique por .
Etapa 2.3.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.4
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.3.4.1
Reescreva como .
Etapa 2.3.4.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.4.2.1
Multiplique por .
Etapa 2.3.4.2.2
Combine e .
Etapa 2.3.4.2.3
Mova o número negativo para a frente da fração.
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 3.2
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3.3
Resolva .
Toque para ver mais passagens...
Etapa 3.3.1
Reescreva a equação como .
Etapa 3.3.2
Remova o termo de valor absoluto. Isso cria um no lado direito da equação, porque .
Etapa 4
Agrupe os termos da constante.
Toque para ver mais passagens...
Etapa 4.1
Reescreva como .
Etapa 4.2
Reordene e .
Etapa 4.3
Combine constantes com o sinal de mais ou menos.