Cálculo Exemplos

Resolve a equação diferencial (4y-3x)dx+5xdy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Some e .
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4
Multiplique por .
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
O lado esquerdo não é igual ao direito. Portanto, a equação não é uma identidade.
não é uma identidade.
não é uma identidade.
Etapa 4
Encontre o fator de integração .
Toque para ver mais passagens...
Etapa 4.1
Substitua por .
Etapa 4.2
Substitua por .
Etapa 4.3
Substitua por .
Toque para ver mais passagens...
Etapa 4.3.1
Substitua por .
Etapa 4.3.2
Subtraia de .
Etapa 4.3.3
Mova o número negativo para a frente da fração.
Etapa 4.4
Encontre o fator de integração .
Etapa 5
Avalie a integral .
Toque para ver mais passagens...
Etapa 5.1
Como é constante com relação a , mova para fora da integral.
Etapa 5.2
Como é constante com relação a , mova para fora da integral.
Etapa 5.3
A integral de com relação a é .
Etapa 5.4
Simplifique.
Etapa 5.5
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.5.1
Multiplique .
Toque para ver mais passagens...
Etapa 5.5.1.1
Reordene e .
Etapa 5.5.1.2
Simplifique movendo para dentro do logaritmo.
Etapa 5.5.2
Simplifique movendo para dentro do logaritmo.
Etapa 5.5.3
Potenciação e logaritmo são funções inversas.
Etapa 5.5.4
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 5.5.4.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.5.4.2
Combine e .
Etapa 5.5.4.3
Mova o número negativo para a frente da fração.
Etapa 5.5.5
Reescreva a expressão usando a regra do expoente negativo .
Etapa 6
Multiplique ambos os lados de pelo fator de integração .
Toque para ver mais passagens...
Etapa 6.1
Multiplique por .
Etapa 6.2
Multiplique por .
Etapa 6.3
Multiplique por .
Etapa 6.4
Multiplique .
Toque para ver mais passagens...
Etapa 6.4.1
Combine e .
Etapa 6.4.2
Combine e .
Etapa 6.5
Mova para o numerador usando a regra do expoente negativo .
Etapa 6.6
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 6.6.1
Mova .
Etapa 6.6.2
Multiplique por .
Toque para ver mais passagens...
Etapa 6.6.2.1
Eleve à potência de .
Etapa 6.6.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 6.6.3
Escreva como uma fração com um denominador comum.
Etapa 6.6.4
Combine os numeradores em relação ao denominador comum.
Etapa 6.6.5
Some e .
Etapa 6.7
Mova para a esquerda de .
Etapa 7
A integral de é .
Etapa 8
Integre para encontrar .
Toque para ver mais passagens...
Etapa 8.1
Aplique a regra da constante.
Etapa 9
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 10
Defina .
Etapa 11
Encontre .
Toque para ver mais passagens...
Etapa 11.1
Diferencie em relação a .
Etapa 11.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 11.3
Avalie .
Toque para ver mais passagens...
Etapa 11.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 11.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 11.3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 11.3.4
Combine e .
Etapa 11.3.5
Combine os numeradores em relação ao denominador comum.
Etapa 11.3.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 11.3.6.1
Multiplique por .
Etapa 11.3.6.2
Subtraia de .
Etapa 11.3.7
Mova o número negativo para a frente da fração.
Etapa 11.3.8
Combine e .
Etapa 11.3.9
Combine e .
Etapa 11.3.10
Multiplique por .
Etapa 11.3.11
Combine e .
Etapa 11.3.12
Mova para a esquerda de .
Etapa 11.3.13
Mova para o denominador usando a regra do expoente negativo .
Etapa 11.3.14
Fatore de .
Etapa 11.3.15
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 11.3.15.1
Fatore de .
Etapa 11.3.15.2
Cancele o fator comum.
Etapa 11.3.15.3
Reescreva a expressão.
Etapa 11.4
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 11.5
Reordene os termos.
Etapa 12
Resolva .
Toque para ver mais passagens...
Etapa 12.1
Resolva .
Toque para ver mais passagens...
Etapa 12.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 12.1.1.1
Combine os numeradores em relação ao denominador comum.
Etapa 12.1.1.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 12.1.1.2.1
Aplique a propriedade distributiva.
Etapa 12.1.1.2.2
Multiplique por .
Etapa 12.1.1.2.3
Multiplique por .
Etapa 12.1.1.3
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 12.1.1.3.1
Subtraia de .
Etapa 12.1.1.3.2
Some e .
Etapa 12.1.1.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 12.1.1.4.1
Mova para o numerador usando a regra do expoente negativo .
Etapa 12.1.1.4.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 12.1.1.4.2.1
Mova .
Etapa 12.1.1.4.2.2
Multiplique por .
Toque para ver mais passagens...
Etapa 12.1.1.4.2.2.1
Eleve à potência de .
Etapa 12.1.1.4.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 12.1.1.4.2.3
Escreva como uma fração com um denominador comum.
Etapa 12.1.1.4.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 12.1.1.4.2.5
Some e .
Etapa 12.1.2
Subtraia dos dois lados da equação.
Etapa 13
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 13.1
Integre ambos os lados de .
Etapa 13.2
Avalie .
Etapa 13.3
Como é constante com relação a , mova para fora da integral.
Etapa 13.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 13.5
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 13.5.1
Reescreva como .
Etapa 13.5.2
Simplifique.
Toque para ver mais passagens...
Etapa 13.5.2.1
Combine e .
Etapa 13.5.2.2
Multiplique por .
Etapa 13.5.2.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 13.5.2.3.1
Fatore de .
Etapa 13.5.2.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 13.5.2.3.2.1
Fatore de .
Etapa 13.5.2.3.2.2
Cancele o fator comum.
Etapa 13.5.2.3.2.3
Reescreva a expressão.
Etapa 13.5.2.4
Mova o número negativo para a frente da fração.
Etapa 14
Substitua por em .
Etapa 15
Simplifique .
Toque para ver mais passagens...
Etapa 15.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 15.1.1
Combine e .
Etapa 15.1.2
Mova para a esquerda de .
Etapa 15.2
Reordene os fatores em .