Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=( logaritmo natural de x)/(xy) , y(1)=2
,
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Reagrupe os fatores.
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Multiplique por .
Etapa 1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.2.1
Fatore de .
Etapa 1.3.2.2
Cancele o fator comum.
Etapa 1.3.2.3
Reescreva a expressão.
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.1.1.1
Diferencie .
Etapa 2.3.1.1.2
A derivada de em relação a é .
Etapa 2.3.1.2
Reescreva o problema usando e .
Etapa 2.3.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.3.3
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Combine e .
Etapa 3.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.1.2.1
Cancele o fator comum.
Etapa 3.2.1.1.2.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Combine e .
Etapa 3.2.2.1.2
Aplique a propriedade distributiva.
Etapa 3.2.2.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.1.3.1
Cancele o fator comum.
Etapa 3.2.2.1.3.2
Reescreva a expressão.
Etapa 3.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Simplifique a constante de integração.
Etapa 5
Como é positivo na condição inicial , considere apenas para encontrar . Substitua por e por .
Etapa 6
Resolva .
Toque para ver mais passagens...
Etapa 6.1
Reescreva a equação como .
Etapa 6.2
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 6.3
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 6.3.1
Use para reescrever como .
Etapa 6.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 6.3.2.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 6.3.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.3.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.2.1.1.2.1
Cancele o fator comum.
Etapa 6.3.2.1.1.2.2
Reescreva a expressão.
Etapa 6.3.2.1.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.3.2.1.2.1
O logaritmo natural de é .
Etapa 6.3.2.1.2.2
Elevar a qualquer potência positiva produz .
Etapa 6.3.2.1.3
Simplifique somando os zeros.
Toque para ver mais passagens...
Etapa 6.3.2.1.3.1
Some e .
Etapa 6.3.2.1.3.2
Simplifique.
Etapa 6.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.3.1
Eleve à potência de .
Etapa 7
Substitua por em e simplifique.
Toque para ver mais passagens...
Etapa 7.1
Substitua por .