Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=1/(2+x) , y(0)=3
,
Etapa 1
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Aplique a regra da constante.
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.1.1.1
Diferencie .
Etapa 2.3.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.1.1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.1.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.1.1.5
Some e .
Etapa 2.3.1.2
Reescreva o problema usando e .
Etapa 2.3.2
A integral de com relação a é .
Etapa 2.3.3
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .
Etapa 3
Use a condição inicial para encontrar o valor de , substituindo por e por em .
Etapa 4
Resolva .
Toque para ver mais passagens...
Etapa 4.1
Reescreva a equação como .
Etapa 4.2
Simplifique .
Toque para ver mais passagens...
Etapa 4.2.1
Some e .
Etapa 4.2.2
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 4.3
Subtraia dos dois lados da equação.
Etapa 5
Substitua por em e simplifique.
Toque para ver mais passagens...
Etapa 5.1
Substitua por .
Etapa 5.2
Use a propriedade dos logaritmos do quociente, .